Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 183

Publication Record

Connections

iNKT Cells Suppress Pathogenic NK1.1CD8 T Cells in DSS-Induced Colitis.
Lee SW, Park HJ, Cheon JH, Wu L, Van Kaer L, Hong S
(2018) Front Immunol 9: 2168
MeSH Terms: Animals, CD8-Positive T-Lymphocytes, Colitis, Dextran Sulfate, Humans, Interferon-gamma, Mice, Mice, Knockout, Natural Killer T-Cells, T-Lymphocytes, Regulatory
Show Abstract · Added March 26, 2019
T cells producing IFNγ play a pathogenic role in the development of inflammatory bowel disease (IBD). To investigate the functions of CD1d-dependent invariant natural killer T (iNKT) cells in experimental colitis induced in Yeti mice with dysregulated expression of IFNγ, we generated iNKT cell-deficient Yeti/CD1d KO mice and compared colitis among WT, CD1d KO, Yeti, and Yeti/CD1d KO mice following DSS treatment. We found that deficiency of iNKT cells exacerbated colitis and disease pathogenesis was mainly mediated by NK1.1CD8 T cells. Furthermore, the protective effects of iNKT cells correlated with up-regulation of regulatory T cells. Taken together, our results have demonstrated that CD1d-dependent iNKT cells and CD1d-independent NK1.1CD8 T cells reciprocally regulate the development of intestinal inflammatory responses mediated by IFNγ-dysregulation. These findings also identify NK1.1CD8 T cells as novel target cells for the development of therapeutics for human IBD.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The Immune Landscape of Cancer.
Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Cancer Genome Atlas Research Network, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I
(2018) Immunity 48: 812-830.e14
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Child, Female, Genomics, Humans, Interferon-gamma, Macrophages, Male, Middle Aged, Neoplasms, Prognosis, Th1-Th2 Balance, Transforming Growth Factor beta, Wound Healing, Young Adult
Show Abstract · Added October 30, 2019
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Cytokine-mediated changes in K channel activity promotes an adaptive Ca response that sustains β-cell insulin secretion during inflammation.
Dickerson MT, Bogart AM, Altman MK, Milian SC, Jordan KL, Dadi PK, Jacobson DA
(2018) Sci Rep 8: 1158
MeSH Terms: Adult, Animals, Calcium, Female, Gene Expression Regulation, Glucose, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Interferon-gamma, Interleukin-1beta, Ion Transport, Islets of Langerhans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Potassium, Potassium Channels, Tandem Pore Domain, Primary Cell Culture, RNA, Messenger, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Tissue Culture Techniques, Tumor Necrosis Factor-alpha
Show Abstract · Added February 7, 2018
Cytokines present during low-grade inflammation contribute to β-cell dysfunction and diabetes. Cytokine signaling disrupts β-cell glucose-stimulated Ca influx (GSCI) and endoplasmic reticulum (ER) Ca ([Ca]) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter β-cell Ca handling remain unknown. Here we investigated the role of K currents in cytokine-mediated β-cell dysfunction. K currents, which control the termination of intracellular Ca ([Ca]) oscillations, were reduced following cytokine exposure. As a consequence, [Ca] and electrical oscillations were accelerated. Cytokine exposure also increased basal islet [Ca] and decreased GSCI. The effect of cytokines on TALK-1 K currents were also examined as TALK-1 mediates K by facilitating [Ca] release. Cytokine exposure decreased KCNK16 transcript abundance and associated TALK-1 protein expression, increasing [Ca] storage while maintaining 2 phase GSCI and GSIS. This adaptive Ca response was absent in TALK-1 KO islets, which exhibited decreased 2 phase GSCI and diminished GSIS. These findings suggest that K and TALK-1 currents play important roles in altered β-cell Ca handling and electrical activity during low-grade inflammation. These results also reveal that a cytokine-mediated reduction in TALK-1 serves an acute protective role in β-cells by facilitating increased Ca content to maintain GSIS.
0 Communities
1 Members
0 Resources
25 MeSH Terms
The Combined Utility of Ex Vivo IFN-γ Release Enzyme-Linked ImmunoSpot Assay and In Vivo Skin Testing in Patients with Antibiotic-Associated Severe Cutaneous Adverse Reactions.
Trubiano JA, Strautins K, Redwood AJ, Pavlos R, Konvinse KC, Aung AK, Slavin MA, Thursky KA, Grayson ML, Phillips EJ
(2018) J Allergy Clin Immunol Pract 6: 1287-1296.e1
MeSH Terms: Adult, Aged, Aged, 80 and over, Anti-Bacterial Agents, Drug Eruptions, Enzyme-Linked Immunospot Assay, Female, Humans, Interferon-gamma, Leukocytes, Mononuclear, Male, Middle Aged, Pilot Projects, Skin Tests, Young Adult
Show Abstract · Added March 30, 2020
BACKGROUND - For severe cutaneous adverse reactions (SCARs) associated with multiple antibiotics dosed concurrently, clinical causality is challenging and diagnostic approaches are limited, leading to constricted future antibiotic choices.
OBJECTIVE - To examine the combined utility of in vivo and ex vivo diagnostic approaches at assigning drug causality in a cohort of patients with antibiotic-associated (AA)-SCARs.
METHODS - Patients with AA-SCARs were prospectively recruited between April 2015 and February 2017. In vivo testing (patch testing or delayed intradermal testing) was performed to the implicated antibiotic(s) at the highest nonirritating concentration and read at 24 hours through 1 week. Ex vivo testing used patient peripheral blood mononuclear cells (PBMCs) stimulated with a range of pharmacologically relevant concentrations of implicated antibiotics to measure dose-dependent IFN-γ release from CD4+ and CD8+ T cells via an enzyme-linked immunoSpot assay.
RESULTS - In 19 patients with AA-SCARs, combined in vivo and ex vivo testing assigned antibiotic causality in 15 (79%) patients. Ten patients (53%) with AA-SCARs were positive on IFN-γ release enzyme-linked immunoSpot assay, with an overall reported sensitivity of 52% (95% CI, 29-76) and specificity of 100% (95% CI, 79-100), with improved sensitivity noted in acute (within 1 day to 6 weeks after SCAR onset) testing (75%) and in patients with higher phenotypic scores (59%). There was increased use of narrow-spectrum beta-lactams and antibiotics from within the implicated class following testing in patients with a positive ex vivo or in vivo test result.
CONCLUSIONS - We demonstrate the potential utility of combined in vivo and ex vivo testing in patients with AA-SCARs to assign drug causality with high specificity.
Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
A New Role of Mister (MR) T in Hypertension: Mineralocorticoid Receptor, Immune System, and Hypertension.
Barbaro NR, Kirabo A, Harrison DG
(2017) Circ Res 120: 1527-1529
MeSH Terms: Blood Pressure, Humans, Hypertension, Interferon-gamma, Receptors, Mineralocorticoid, T-Lymphocytes
Added December 27, 2017
0 Communities
1 Members
0 Resources
6 MeSH Terms
Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain.
Grifoni A, Angelo M, Sidney J, Paul S, Peters B, de Silva AD, Phillips E, Mallal S, Diehl SA, Botten J, Boyson J, Kirkpatrick BD, Whitehead SS, Durbin AP, Sette A, Weiskopf D
(2017) J Virol 91:
MeSH Terms: 3' Untranslated Regions, Antigens, Viral, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Dengue, Dengue Virus, Enzyme-Linked Immunospot Assay, Epitopes, Humans, Interferon-gamma, Sequence Deletion
Show Abstract · Added March 30, 2020
A deletion variant of the dengue virus (DENV) serotype 2 (DENV2) Tonga/74 strain lacking 30 nucleotides from its 3' untranslated region (rDEN2Δ30) has previously been established for use in a controlled human DENV challenge model. To evaluate if this model is appropriate for the derivation of correlates of protection for DENV vaccines on the basis of cellular immunity, we wanted to compare the cellular immune response to this challenge strain to the response induced by natural infection. To achieve this, we predicted HLA class I- and class II-restricted peptides from rDEN2Δ30 and used them in a gamma interferon enzyme-linked immunosorbent spot assay to interrogate CD8 and CD4 T cell responses in healthy volunteers infected with rDEN2Δ30. At the level of CD8 responses, vigorous responses were detected in approximately 80% of donors. These responses were similar in terms of the magnitude and the numbers of epitopes recognized to the responses previously observed in peripheral blood mononuclear cells from donors from regions where DENV is hyperendemic. The similarity extended to the immunodominance hierarchy of the DENV nonstructural proteins, with NS3, NS5, and NS1 being dominant in both donor cohorts. At the CD4 level, the responses to rDEN2Δ30 vaccination were less vigorous than those to natural DENV infection and were more focused on nonstructural proteins. The epitopes recognized following rDEN2Δ30 infection and natural infection were largely overlapping for both the CD8 (100%) and CD4 (85%) responses. Finally, rDEN2Δ30 induced stronger CD8 responses than other, more attenuated DENV isolates. The lack of a known correlate of protection and the failure of a neutralizing antibody to correlate with protection against dengue virus have highlighted the need for a human DENV challenge model to better evaluate the candidate live attenuated dengue vaccines. In this study, we sought to characterize the immune profiles of rDEN2Δ30-infected subjects and to compare the profiles with those for subjects from areas where DENV is hyperendemic. Our data demonstrate that T cell responses to rDENV2Δ30 are largely similar to those to natural infection in terms of specificity, highlighting that the response to this virus in humans is appropriate as a model for the T cell response to primary DENV2 infection.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
IL-15 Enables Septic Shock by Maintaining NK Cell Integrity and Function.
Guo Y, Luan L, Patil NK, Wang J, Bohannon JK, Rabacal W, Fensterheim BA, Hernandez A, Sherwood ER
(2017) J Immunol 198: 1320-1333
MeSH Terms: Animals, Female, Interferon-gamma, Interleukin-15, Killer Cells, Natural, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Shock, Septic
Show Abstract · Added May 10, 2017
Interleukin 15 is essential for the development and differentiation of NK and memory CD8 (mCD8) T cells. Our laboratory previously showed that NK and CD8 T lymphocytes facilitate the pathobiology of septic shock. However, factors that regulate NK and CD8 T lymphocyte functions during sepsis are not well characterized. We hypothesized that IL-15 promotes the pathogenesis of sepsis by maintaining NK and mCD8 T cell integrity. To test our hypothesis, the pathogenesis of sepsis was assessed in IL-15-deficient (IL-15 knockout, KO) mice. IL-15 KO mice showed improved survival, attenuated hypothermia, and less proinflammatory cytokine production during septic shock caused by cecal ligation and puncture or endotoxin-induced shock. Treatment with IL-15 superagonist (IL-15 SA, IL-15/IL-15Rα complex) regenerated NK and mCD8 T cells and re-established mortality of IL-15 KO mice during septic shock. Preventing NK cell regeneration attenuated the restoration of mortality caused by IL-15 SA. If given immediately prior to septic challenge, IL-15-neutralizing IgG M96 failed to protect against septic shock. However, M96 caused NK cell depletion if given 4 d prior to septic challenge and conferred protection. IL-15 SA treatment amplified endotoxin shock, which was prevented by NK cell or IFN-γ depletion. IL-15 SA treatment also exacerbated septic shock caused by cecal ligation and puncture when given after the onset of sepsis. In conclusion, endogenous IL-15 does not directly augment the pathogenesis of sepsis but enables the development of septic shock by maintaining NK cell numbers and integrity. Exogenous IL-15 exacerbates the severity of sepsis by activating NK cells and facilitating IFN-γ production.
Copyright © 2017 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation.
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WW, Halu A, Yamada I, Yoshida H, Hara T, Wei M, Inoue N, Fukuda D, Mojcher A, Mattson PC, Barabási AL, Boothby M, Aikawa E, Singh SA, Aikawa M
(2016) Nat Commun 7: 12849
MeSH Terms: ADP-Ribosylation, Animals, Apoptosis, Atherosclerosis, Cell Survival, Coronary Artery Disease, Female, Humans, Inflammation, Interferon-gamma, Interleukin-4, Lipopolysaccharide Receptors, Macrophage Activation, Male, Mice, Mice, Inbred C57BL, Neoplasm Proteins, Phosphorylation, Plaque, Atherosclerotic, Poly(ADP-ribose) Polymerases, RAW 264.7 Cells, RNA Interference, Ribose, STAT1 Transcription Factor, THP-1 Cells
Show Abstract · Added March 14, 2018
Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Flt3 Ligand Treatment Attenuates T Cell Dysfunction and Improves Survival in a Murine Model of Burn Wound Sepsis.
Patil NK, Bohannon JK, Luan L, Guo Y, Fensterheim B, Hernandez A, Wang J, Sherwood ER
(2017) Shock 47: 40-51
MeSH Terms: Animals, Burns, CD28 Antigens, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Disease Models, Animal, Interferon-gamma, Male, Membrane Proteins, Mice, Mice, Inbred BALB C, Sepsis, T-Lymphocytes
Show Abstract · Added December 13, 2016
INTRODUCTION - Sepsis is a leading cause of death among severely burned patients. Burn injury disrupts the protective skin barrier and causes immunological dysfunction. In our previous studies, we found that burn injury and wound infection causes a significant decline in lymphocyte populations, implying adaptive immune system dysfunction. In the present study, we examined the effect of treatment with Fms-like tyrosine kinase-3 Ligand (Flt3L) on T cell phenotype and function in a model of burn wound sepsis. FLt3L is an essential cytokine required for hematopoietic progenitor cell development and expansion of both myeloid and lymphoid lineages. Flt3L has been shown to potentiate innate immune functions of dendritic cells and neutrophils during burn wound sepsis. However, the ability of Flt3L to improve T cell function during burn wound sepsis has not been previously evaluated.
METHODS - Mice underwent 35% total body surface area scald burn and were treated with Flt3L (10 μg) or vehicle daily via the intraperitoneal route starting 1 day after burn injury. On day 4 after burn injury, Pseudomonas aeruginosa was used to induce wound infection. Leukocytes in spleen and wound draining lymph nodes were characterized using flow cytometry. Bacterial clearance, organ injury, and survival were also assessed.
RESULTS - Flt3L treatment prevented the decline in splenic CD4 and CD8 T cells caused by burn injury and infection. Flt3L treatment also attenuated the decline in CD28 expression on CD4 and CD8 T cells and IFNγ production by CD8 T cells in the spleen and wound draining lymph nodes. Furthermore, Flt3L decreased the levels of programmed death ligand 1 expression on splenic dendritic cells and macrophages. Flt3 treatment improved systemic bacterial clearance, decreased liver and kidney injury, and significantly improved survival in mice with burn wound sepsis.
CONCLUSION - Burn injury and associated sepsis causes significant loss of T cells and evidence of T cell dysfunction. Flt3L attenuates T cell dysfunction and improves host resistance to burn wound sepsis in mice.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.
Satoh M, Hoshino M, Fujita K, Iizuka M, Fujii S, Clingan CS, Van Kaer L, Iwabuchi K
(2016) Sci Rep 6: 28473
MeSH Terms: 3T3-L1 Cells, Adipocytes, Adiponectin, Animals, Antigen Presentation, Antigens, CD1d, B7-1 Antigen, Diet, High-Fat, Disease Models, Animal, Disease Progression, Galactosylceramides, Insulin Resistance, Interferon-gamma, Lymphocyte Activation, Macrophage Activation, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Natural Killer T-Cells, Obesity
Show Abstract · Added July 30, 2016
It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity.
0 Communities
1 Members
0 Resources
21 MeSH Terms