Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 8 of 8

Publication Record


De novo designed transmembrane peptides activating the α5β1 integrin.
Mravic M, Hu H, Lu Z, Bennett JS, Sanders CR, Orr AW, DeGrado WF
(2018) Protein Eng Des Sel 31: 181-190
MeSH Terms: Amino Acid Sequence, Cell Membrane, Computer-Aided Design, Drug Design, Humans, Integrin alpha5beta1, Micelles, Peptides, Protein Conformation, alpha-Helical, Protein Domains
Show Abstract · Added November 21, 2018
Computationally designed transmembrane α-helical peptides (CHAMP) have been used to compete for helix-helix interactions within the membrane, enabling the ability to probe the activation of the integrins αIIbβ3 and αvβ3. Here, this method is extended towards the design of CHAMP peptides that inhibit the association of the α5β1 transmembrane (TM) domains, targeting the Ala-X3-Gly motif within α5. Our previous design algorithm was performed alongside a new workflow implemented within the widely used Rosetta molecular modeling suite. Peptides from each computational approach activated integrin α5β1 but not αVβ3 in human endothelial cells. Two CHAMP peptides were shown to directly associate with an α5 TM domain peptide in detergent micelles to a similar degree as a β1 TM peptide does. By solution-state nuclear magnetic resonance, one of these CHAMP peptides was shown to bind primarily the integrin β1 TM domain, which itself has a Gly-X3-Gly motif. The second peptide associated modestly with both α5 and β1 constructs, with slight preference for α5. Although the design goal was not fully realized, this work characterizes novel CHAMP peptides activating α5β1 that can serve as useful reagents for probing integrin biology.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ
(2017) J Cell Biol 216: 3799-3816
MeSH Terms: Cancer-Associated Fibroblasts, Cell Communication, Cell Line, Tumor, Cell Movement, Coculture Techniques, Extracellular Matrix, Fibronectins, Humans, Integrin alpha5beta1, Male, Mechanotransduction, Cellular, Neoplasm Invasiveness, Nonmuscle Myosin Type IIA, Prostatic Neoplasms, RNA Interference, Receptor, Platelet-Derived Growth Factor alpha, Time Factors, Transfection, Tumor Cells, Cultured, Tumor Microenvironment
Show Abstract · Added March 14, 2018
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
© 2017 Erdogan et al.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Clustering of integrin α5 at the lateral membrane restores epithelial polarity in invasive colorectal cancer cells.
Starchenko A, Graves-Deal R, Yang YP, Li C, Zent R, Singh B, Coffey RJ
(2017) Mol Biol Cell 28: 1288-1300
MeSH Terms: Antibodies, Cadherins, Cell Adhesion, Cell Culture Techniques, Cell Line, Tumor, Cell Polarity, Colorectal Neoplasms, Epithelial Cells, Extracellular Matrix, Fibronectins, Humans, Integrin alpha5, Integrin alpha5beta1, Integrin beta1, Membrane Proteins, Membranes
Show Abstract · Added May 3, 2017
Apicobasolateral polarity is a fundamental property of epithelial cells, and its loss is a hallmark of cancer. Integrin-mediated contact with the extracellular matrix defines the basal surface, setting in motion E-cadherin-mediated cell-cell contact, which establishes apicobasolateral polarity. Role(s) for lateral integrins in this polarization process and the consequences of their disruption are incompletely understood. We show that addition of an integrin β1-activating monoclonal antibody, P4G11, to invasive colorectal cancer cells in three-dimensional type 1 collagen reverts the invasive phenotype and restores apicobasolateral polarity. P4G11 induces clustering of integrin α5β1 at lateral, intercellular surfaces. This leads to deposition and polymerization of fibronectin and recruitment of paxillin to sites of lateral integrin α5β1 clustering and is followed by tight junction formation, as determined by ZO-1 localization. Inducible elimination of integrin α5 abrogates the epithelial-organizing effects of P4G11. In addition, polymerization of fibronectin is required for the effects of P4G11, and addition of polymerized superfibronectin is sufficient to induce tight junction formation and apicobasolateral polarization. In the normal human colon, we show that integrin α5 localizes to the lateral membrane of terminally differentiated colonocytes and that integrin α5 staining may be reduced in colorectal cancer. Thus we propose a novel role for integrin α5β1 in regulating epithelial morphogenesis.
© 2017 Starchenko et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
2 Members
0 Resources
16 MeSH Terms
Rab25 regulates integrin expression in polarized colonic epithelial cells.
Krishnan M, Lapierre LA, Knowles BC, Goldenring JR
(2013) Mol Biol Cell 24: 818-31
MeSH Terms: Adenovirus E1A Proteins, Caco-2 Cells, Cell Line, Tumor, Cell Movement, Cell Polarity, Claudin-1, Epithelial Cells, Gene Expression Regulation, Gene Expression Regulation, Neoplastic, HEK293 Cells, Humans, Integrin alpha2, Integrin alpha5, Integrin alpha5beta1, Integrin beta1, Integrins, Intestinal Mucosa, Microvilli, Neoplasm Invasiveness, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-ets, RNA Interference, rab GTP-Binding Proteins
Show Abstract · Added October 7, 2013
Rab25 is a tumor suppressor for colon cancer in humans and mice. To identify elements of intestinal polarity regulated by Rab25, we developed Caco2-BBE cell lines stably expressing short hairpin RNA for Rab25 and lines rescuing Rab25 knockdown with reexpression of rabbit Rab25. Rab25 knockdown decreased α2-, α5-, and β1-integrin expression. We observed colocalization and direct association of Rab25 with α5β1-integrins. Rab25 knockdown also up-regulated claudin-1 expression, increased transepithelial resistance, and increased invasive behavior. Rab25-knockdown cells showed disorganized brush border microvilli with decreases in villin expression. All of these changes were reversed by reintroduction of rabbit Rab25. Rab25 knockdown altered the expression of 29 gene transcripts, including the loss of α5-integrin transcripts. Rab25 loss decreased expression of one transcription factor, ETV4, and overexpression of ETV4 in Rab25-knockdown cells reversed losses of α5β1-integrin. The results suggest that Rab25 controls intestinal cell polarity through the regulation of gene expression.
1 Communities
2 Members
0 Resources
23 MeSH Terms
TNFalpha accelerates monocyte to endothelial transdifferentiation in tumors by the induction of integrin alpha5 expression and adhesion to fibronectin.
Li B, Pozzi A, Young PP
(2011) Mol Cancer Res 9: 702-11
MeSH Terms: Animals, Antigens, CD, Cadherins, Cell Adhesion, Cell Transdifferentiation, Cells, Cultured, Endothelium, Fibronectins, Gene Expression Profiling, Humans, Integrin alpha5beta1, Leukocytes, Mononuclear, Mice, Mice, Inbred C57BL, Monocytes, Myeloid Cells, Neoplasms, Neovascularization, Pathologic, Tumor Necrosis Factor-alpha, Up-Regulation, Vascular Endothelial Growth Factor Receptor-2
Show Abstract · Added February 24, 2014
Tumor-associated myeloid cells are believed to promote tumor development by stimulating tumor growth, angiogenesis, invasion, and metastasis. Tumor-associated myeloid cells that coexpress endothelial and myeloid markers represent a proangiogenic subpopulation known as vascular leukocytes. Recently, we and others had shown that tumor-derived TNFα promotes local tumor growth and vascularity. Our data suggested that tumor growth is in part due to TNFα-mediated increased numbers of tumor-associated vascular leukocytes (i.e., myeloid-endothelial biphenotypic cells). The work detailed herein explored the mechanism by which TNFα mediates endothelial differentiation of myeloid cells. Our studies showed that fibronectin is a robust facilitator of endothelial differentiation of blood mononuclear cells in vitro. We have found that TNFα treatment of monocytes significantly increased expression of α(5)β(1) integrin, a major fibronectin receptor enriched on endothelial cells, leading to a consequent fourfold increase in fibronectin adhesion. Furthermore, TNFα-treated monocytes upregulated expression of endothelial markers, flk-1(VEGFR2/KDR) and VE-cadherin. Integrin α(5) subunit inhibitory antibodies blocked adhesion to fibronectin as well as consequent upregulation of flk-1 and VE-cadherin transcripts, implying a role for outside-in signaling by the α(5)β(1) integrin after binding fibronectin. Finally, treatment of mouse tumors with anti-α(5) antibodies reduced accumulation of tumor vascular leukocytes in vivo. Our studies suggest that tumor cell-derived TNFα constitutes a tumor microenvironment signal that promotes differentiation of tumor-associated monocytes toward a proangiogenic/provasculogenic myeloid-endothelial phenotype via upregulation of the fibronectin receptor α(5)β(1).
0 Communities
1 Members
0 Resources
21 MeSH Terms
PLC-gamma1 regulates fibronectin assembly and cell aggregation.
Crooke CE, Pozzi A, Carpenter GF
(2009) Exp Cell Res 315: 2207-14
MeSH Terms: Animals, Cell Aggregation, Cells, Cultured, Culture Media, Conditioned, Deoxycholic Acid, Fibroblasts, Fibronectins, Integrin alpha5beta1, Mice, Mice, Knockout, Phospholipase C gamma
Show Abstract · Added February 24, 2014
Phospholipase C-gamma1 (PLC-gamma1) mediates cell adhesion and migration through an undefined mechanism. Here, we examine the role of PLC-gamma1 in cell-matrix adhesion in a hanging drop assay of cell aggregation. Plcg1 Null (-/-) mouse embryonic fibroblasts formed aggregates that were larger and significantly more resistant to dissociation than cells in which PLC-gamma1 is re-expressed (Null+ cells). Aggregate formation could be disrupted by inhibition of fibronectin interaction with integrins, indicating that fibronectin assembly may mediate aggregate formation. Fibronectin assembly was mediated by integrin alpha5beta1 in both cell lines, while assays measuring fibronectin assembly revealed increased assembly in the Null cells. Null and Null+ cells exhibited equivalent fibronectin mRNA levels and equivalent levels of fibronectin protein in pulse-labeling experiments. However, levels of secreted fibronectin in the conditioned medium were increased in Null cells. The data implicates a negative regulatory role for PLC-gamma1 in cell aggregation by controlling the secretion of fibronectin into the media and its assembly into fibrils.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Focal adhesion kinase modulates cell adhesion strengthening via integrin activation.
Michael KE, Dumbauld DW, Burns KL, Hanks SK, García AJ
(2009) Mol Biol Cell 20: 2508-19
MeSH Terms: Animals, Biomechanical Phenomena, Cell Adhesion, Fibroblasts, Fibronectins, Focal Adhesion Protein-Tyrosine Kinases, Gene Knockdown Techniques, Humans, Integrin alpha5beta1, Integrins, Kinetics, Mice, Phosphorylation, Phosphotyrosine, Protein Binding, Solubility, Talin, Tetracycline, Vinculin
Show Abstract · Added January 20, 2015
Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell-ECM forces.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice.
Stoeltzing O, Liu W, Reinmuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM
(2003) Int J Cancer 104: 496-503
MeSH Terms: Angiogenesis Inhibitors, Animals, Apoptosis, Cell Division, Cell Survival, Colorectal Neoplasms, Endothelium, Vascular, Fluorouracil, Integrin alpha5beta1, Liver Neoplasms, Male, Mice, Mice, Inbred BALB C, Oligopeptides
Show Abstract · Added March 5, 2014
Integrin alpha(5)beta(1) is expressed on activated endothelial cells and plays a critical role in tumor angiogenesis. We hypothesized that a novel integrin alpha(5)beta(1) antagonist, ATN-161, would inhibit angiogenesis and growth of liver metastases in a murine model. We further hypothesized that combining ATN-161 with 5-fluorouracil (5-FU) chemotherapy would enhance the antineoplastic effect. Murine colon cancer cells (CT26) were injected into spleens of BALB/c mice to produce liver metastases. Four days thereafter, mice were given either ATN-161 (100 mg/kg, every 3rd day) or saline by intraperitoneal injection, with or without combination of continuous-infusion 5-FU (100 mg/kg/2 weeks), which was started on day 7. On day 20 after tumor cell inoculation, mice were killed and liver weights and number of liver metastases were determined. A follow-up study on survival was also conducted in which mice were randomized to receive ATN-161, 5-FU or ATN-161+5-FU. Combination therapy with ATN-161+5-FU significantly reduced tumor burden (liver weight) and number of liver metastases (p<0.02). Liver tumors in the ATN-161 and ATN-161+5-FU groups had significantly fewer microvessels (p<0.05) than tumors in the control or 5-FU-treated groups. Unlike treatment with either agent alone, ATN-161+5-FU significantly increased tumor cell apoptosis and decreased tumor cell proliferation (p<0.03) and improved overall survival (p<0.03, log-rank test). Targeting integrin alpha(5)beta(1) in combination with 5-FU infusion reduced liver metastases formation and improved survival in this colon cancer model. The enhancement of antineoplastic activity from the combination of anti-angiogenic therapy and chemotherapy may be a promising approach for treating metastatic colorectal cancer.
Copyright 2003 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
14 MeSH Terms