Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 119

Publication Record

Connections

Autochthonous tumors driven by loss have an ongoing requirement for the RBP2 histone demethylase.
McBrayer SK, Olenchock BA, DiNatale GJ, Shi DD, Khanal J, Jennings RB, Novak JS, Oser MG, Robbins AK, Modiste R, Bonal D, Moslehi J, Bronson RT, Neuberg D, Nguyen QD, Signoretti S, Losman JA, Kaelin WG
(2018) Proc Natl Acad Sci U S A 115: E3741-E3748
MeSH Terms: Alleles, Animals, DNA-Binding Proteins, Echocardiography, Enzyme Activation, Fibroblasts, Genes, Retinoblastoma, Heart Septal Defects, Histone Code, Integrases, Jumonji Domain-Containing Histone Demethylases, Mice, Mice, Inbred C57BL, Molecular Targeted Therapy, Neoplasm Proteins, Pituitary Neoplasms, Recombinant Fusion Proteins, Retinoblastoma Protein, Tamoxifen, Thyroid Neoplasms, Transgenes
Show Abstract · Added April 22, 2018
Inactivation of the retinoblastoma gene () product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline deletion significantly impedes tumorigenesis in mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by inactivation.
0 Communities
1 Members
0 Resources
21 MeSH Terms
A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus.
Kamitakahara A, Bouyer K, Wang CH, Simerly R
(2018) J Comp Neurol 526: 133-145
MeSH Terms: Age Factors, Agouti-Related Protein, Analysis of Variance, Animals, Animals, Newborn, Arcuate Nucleus of Hypothalamus, Axons, ELAV-Like Protein 3, Estrogen Receptor alpha, Female, Green Fluorescent Proteins, Integrases, Leptin, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Neuropeptide Y, Receptors, Leptin, STAT3 Transcription Factor
Show Abstract · Added April 11, 2019
In the developing hypothalamus, the fat-derived hormone leptin stimulates the growth of axons from the arcuate nucleus of the hypothalamus (ARH) to other regions that control energy balance. These projections are significantly reduced in leptin deficient (Lep ) mice and this phenotype is largely rescued by neonatal leptin treatments. However, treatment of mature Lep mice is ineffective, suggesting that the trophic action of leptin is limited to a developmental critical period. To temporally delineate closure of this critical period for leptin-stimulated growth, we treated Lep mice with exogenous leptin during a variety of discrete time periods, and measured the density of Agouti-Related Peptide (AgRP) containing projections from the ARH to the ventral part of the dorsomedial nucleus of the hypothalamus (DMHv), and to the medial parvocellular part of the paraventricular nucleus (PVHmp). The results indicate that leptin loses its neurotrophic potential at or near postnatal day 28. The duration of leptin exposure appears to be important, with 9- or 11-day treatments found to be more effective than shorter (5-day) treatments. Furthermore, leptin treatment for 9 days or more was sufficient to restore AgRP innervation to both the PVHmp and DMHv in Lep females, but only to the DMHv in Lep males. Together, these findings reveal that the trophic actions of leptin are contingent upon timing and duration of leptin exposure, display both target and sex specificity, and that modulation of leptin-dependent circuit formation by each of these factors may carry enduring consequences for feeding behavior, metabolism, and obesity risk.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Advanced Intestinal Cancers often Maintain a Multi-Ancestral Architecture.
Zahm CD, Szulczewski JM, Leystra AA, Paul Olson TJ, Clipson L, Albrecht DM, Middlebrooks M, Thliveris AT, Matkowskyj KA, Washington MK, Newton MA, Eliceiri KW, Halberg RB
(2016) PLoS One 11: e0150170
MeSH Terms: Adenocarcinoma, Adenoma, Animals, Carcinoma in Situ, Cell Lineage, Cell Transformation, Neoplastic, Clone Cells, Disease Models, Animal, Disease Progression, Evolution, Molecular, Fatty Acid-Binding Proteins, Female, Gene Expression Regulation, Neoplastic, Genes, APC, Genes, Reporter, Integrases, Intestinal Mucosa, Intestinal Neoplasms, Luminescent Proteins, Male, Mice, Mice, Inbred C57BL, Models, Biological, Mosaicism, Neoplasm Invasiveness, Neoplastic Stem Cells, RNA, Untranslated, Rats, Transgenes, Tumor Microenvironment
Show Abstract · Added April 12, 2016
A widely accepted paradigm in the field of cancer biology is that solid tumors are uni-ancestral being derived from a single founder and its descendants. However, data have been steadily accruing that indicate early tumors in mice and humans can have a multi-ancestral origin in which an initiated primogenitor facilitates the transformation of neighboring co-genitors. We developed a new mouse model that permits the determination of clonal architecture of intestinal tumors in vivo and ex vivo, have validated this model, and then used it to assess the clonal architecture of adenomas, intramucosal carcinomas, and invasive adenocarcinomas of the intestine. The percentage of multi-ancestral tumors did not significantly change as tumors progressed from adenomas with low-grade dysplasia [40/65 (62%)], to adenomas with high-grade dysplasia [21/37 (57%)], to intramucosal carcinomas [10/23 (43%]), to invasive adenocarcinomas [13/19 (68%)], indicating that the clone arising from the primogenitor continues to coexist with clones arising from co-genitors. Moreover, neoplastic cells from distinct clones within a multi-ancestral adenocarcinoma have even been observed to simultaneously invade into the underlying musculature [2/15 (13%)]. Thus, intratumoral heterogeneity arising early in tumor formation persists throughout tumorigenesis.
0 Communities
1 Members
0 Resources
30 MeSH Terms
Diabetes Caused by Elastase-Cre-Mediated Pdx1 Inactivation in Mice.
Kodama S, Nakano Y, Hirata K, Furuyama K, Horiguchi M, Kuhara T, Masui T, Kawaguchi M, Gannon M, Wright CV, Uemoto S, Kawaguchi Y
(2016) Sci Rep 6: 21211
MeSH Terms: Animals, Diabetes Mellitus, Homeodomain Proteins, Insulin-Secreting Cells, Integrases, Mice, Mice, Knockout, Pancreas, Exocrine, Pancreatic Elastase, Trans-Activators
Show Abstract · Added March 1, 2016
Endocrine and exocrine pancreas tissues are both derived from the posterior foregut endoderm, however, the interdependence of these two cell types during their formation is not well understood. In this study, we generated mutant mice, in which the exocrine tissue is hypoplastic, in order to reveal a possible requirement for exocrine pancreas tissue in endocrine development and/or function. Since previous studies showed an indispensable role for Pdx1 in pancreas organogenesis, we used Elastase-Cre-mediated recombination to inactivate Pdx1 in the pancreatic exocrine lineage during embryonic stages. Along with exocrine defects, including impaired acinar cell maturation, the mutant mice exhibited substantial endocrine defects, including disturbed tip/trunk patterning of the developing ductal structure, a reduced number of Ngn3-expressing endocrine precursors, and ultimately fewer β cells. Notably, postnatal expansion of the endocrine cell content was extremely poor, and the mutant mice exhibited impaired glucose homeostasis. These findings suggest the existence of an unknown but essential factor(s) in the adjacent exocrine tissue that regulates proper formation of endocrine precursors and the expansion and function of endocrine tissues during embryonic and postnatal stages.
1 Communities
2 Members
0 Resources
10 MeSH Terms
Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines.
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC
(2015) Neuroscience 307: 319-37
MeSH Terms: Animals, Biotin, Calbindin 2, Choline O-Acetyltransferase, Chromosomes, Artificial, Bacterial, Dopamine Plasma Membrane Transport Proteins, Female, Gene Expression Regulation, Glycine, Integrases, Luminescent Proteins, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, RNA-Binding Proteins, Retina, Tyrosine 3-Monooxygenase, Visual Pathways, gamma-Aminobutyric Acid
Show Abstract · Added February 3, 2017
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Published by Elsevier Ltd.
1 Communities
0 Members
0 Resources
20 MeSH Terms
LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice.
Kondo J, Powell AE, Wang Y, Musser MA, Southard-Smith EM, Franklin JL, Coffey RJ
(2015) Gastroenterology 149: 407-19.e8
MeSH Terms: Animals, Fluorescent Antibody Technique, Homozygote, Integrases, Interstitial Cells of Cajal, Intestine, Small, Membrane Glycoproteins, Mice, Mice, Knockout, Muscle, Smooth, Myenteric Plexus, Nerve Tissue Proteins, Recombination, Genetic, Submucous Plexus
Show Abstract · Added July 28, 2015
BACKGROUND & AIMS - Interstitial cells of Cajal (ICC) control intestinal smooth muscle contraction to regulate gut motility. ICC within the plane of the myenteric plexus (ICC-MY) arise from KIT-positive progenitor cells during mouse embryogenesis. However, little is known about the ontogeny of ICC associated with the deep muscular plexus (ICC-DMP) in the small intestine and ICC associated with the submucosal plexus (ICC-SMP) in the colon. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) marks intestinal epithelial stem cells, but the role of LRIG1 in nonepithelial intestinal cells has not been identified. We sought to determine the ontogeny of ICC-DMP and ICC-SMP, and whether LRIG1 has a role in their development.
METHODS - Lrig1-null mice (homozygous Lrig1-CreERT2) and wild-type mice were analyzed by immunofluorescence and transit assays. Transit was evaluated by passage of orally administered rhodamine B-conjugated dextran. Lrig1-CreERT2 mice or mice with CreERT2 under control of an inducible smooth muscle promoter (Myh11-CreERT2) were crossed with Rosa26-LSL-YFP mice for lineage tracing analysis.
RESULTS - In immunofluorescence assays, ICC-DMP and ICC-SMP were found to express LRIG1. Based on lineage tracing, ICC-DMP and ICC-SMP each arose from LRIG1-positive smooth muscle progenitors. In Lrig1-null mice, there was loss of staining for KIT in DMP and SMP regions, as well as for 2 additional ICC markers (anoctamin-1 and neurokinin 1 receptor). Lrig1-null mice had significant delays in small intestinal transit compared with control mice.
CONCLUSIONS - LRIG1 regulates the postnatal development of ICC-DMP and ICC-SMP from smooth muscle progenitors in mice. Slowed small intestinal transit observed in Lrig1-null mice may be due, at least in part, to loss of the ICC-DMP population.
Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
14 MeSH Terms
Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization.
Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R
(2014) Development 141: 4751-62
MeSH Terms: Animals, Bronchoalveolar Lavage, Cell Adhesion, Cell Movement, Chemokine CCL2, Enzyme-Linked Immunosorbent Assay, Epithelial Cells, Extracellular Matrix, Integrases, Integrin beta1, Lung, Mice, Microscopy, Confocal, Organogenesis, Pulmonary Alveoli, Pulmonary Surfactant-Associated Protein C, Reactive Oxygen Species, Thiobarbituric Acid Reactive Substances
Show Abstract · Added January 20, 2015
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
© 2014. Published by The Company of Biologists Ltd.
1 Communities
2 Members
0 Resources
18 MeSH Terms
Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.
Hulgan T, Boger MS, Liao DH, McComsey GA, Wanke CA, Mangili A, Walmsley SL, McCreath H, Milne GL, Sanchez SC, Currier JS, Lake JE
(2014) Mediators Inflamm 2014: 803095
MeSH Terms: Adult, Cross-Sectional Studies, Eicosanoids, Female, HIV Infections, Humans, Integrases, Middle Aged, Obesity, Abdominal, Pyrrolidinones, Raltegravir Potassium, Reverse Transcriptase Inhibitors
Show Abstract · Added July 8, 2014
Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≥ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study.
1 Communities
0 Members
0 Resources
12 MeSH Terms
FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype.
DeGraff DJ, Grabowska MM, Case TC, Yu X, Herrick MK, Hayward WJ, Strand DW, Cates JM, Hayward SW, Gao N, Walter MA, Buttyan R, Yi Y, Kaestner KH, Matusik RJ
(2014) Lab Invest 94: 726-39
MeSH Terms: Animals, Cell Differentiation, Epithelium, Hepatocyte Nuclear Factor 3-alpha, Immunohistochemistry, Integrases, Male, Mice, Mice, Knockout, Mice, Transgenic, Microscopy, Fluorescence, Oligonucleotide Array Sequence Analysis, Prostate, Prostatic Hyperplasia, Reverse Transcriptase Polymerase Chain Reaction, Seminal Vesicles, Transcriptome
Show Abstract · Added May 27, 2014
The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1(loxp/loxp) mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1(loxp/loxp) prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.
1 Communities
3 Members
0 Resources
17 MeSH Terms
The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation.
Johnson RW, Brennan HJ, Vrahnas C, Poulton IJ, McGregor NE, Standal T, Walker EC, Koh TT, Nguyen H, Walsh NC, Forwood MR, Martin TJ, Sims NA
(2014) J Bone Miner Res 29: 1492-505
MeSH Terms: Animals, Bone and Bones, Cell Count, Cell Lineage, Collagen Type I, Cytokine Receptor gp130, Female, Gene Deletion, Gene Knockdown Techniques, Glycoproteins, Integrases, Male, Mice, Inbred C57BL, Mice, Knockout, Models, Biological, Organ Size, Osteoblasts, Osteocalcin, Osteoclasts, Osteocytes, Osteogenesis, Reproducibility of Results, Signal Transduction, Sp7 Transcription Factor, Transcription Factors
Show Abstract · Added March 26, 2019
Interleukin-6 (IL-6) family cytokines act via gp130 in the osteoblast lineage to stimulate the formation of osteoclasts (bone resorbing cells) and the activity of osteoblasts (bone forming cells), and to inhibit expression of the osteocyte protein, sclerostin. We report here that a profound reduction in trabecular bone mass occurs both when gp130 is deleted in the entire osteoblast lineage (Osx1Cre gp130 f/f) and when this deletion is restricted to osteocytes (DMP1Cre gp130 f/f). This was caused not by an alteration in osteoclastogenesis, but by a low level of bone formation specific to the trabecular compartment. In contrast, cortical diameter increased to maintain ultimate bone strength, despite a reduction in collagen type 1 production. We conclude that osteocytic gp130 signaling is required for normal trabecular bone mass and proper cortical bone composition.
© 2014 American Society for Bone and Mineral Research.
0 Communities
1 Members
0 Resources
MeSH Terms