Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 159

Publication Record

Connections

Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation.
Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, Gu G, Kaverina I
(2020) Diabetes 69: 1936-1947
MeSH Terms: Animals, Cyclic AMP-Dependent Protein Kinases, Cyclin-Dependent Kinase 5, Glucose, Glycogen Synthase Kinase 3, Insulin Secretion, Insulin-Secreting Cells, Mice, Microtubules, Phosphorylation, Protein Kinase C, tau Proteins
Show Abstract · Added July 2, 2020
The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
© 2020 by the American Diabetes Association.
2 Communities
3 Members
0 Resources
12 MeSH Terms
Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival.
Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G
(2020) Dev Cell 53: 390-405.e10
MeSH Terms: Activating Transcription Factor 4, Animals, Cell Proliferation, DNA-Binding Proteins, Diabetes Mellitus, Female, Heat-Shock Proteins, Humans, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Stress, Physiological, Transcription Factors
Show Abstract · Added May 6, 2020
Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet β cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal β cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human β cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human β cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-βH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.
Copyright © 2020 Elsevier Inc. All rights reserved.
3 Communities
2 Members
0 Resources
15 MeSH Terms
β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion.
Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, Chen W, Gurevich VV, Wess J
(2019) J Clin Invest 129: 3732-3737
MeSH Terms: Animals, Genotype, Glyburide, Guanine Nucleotide Exchange Factors, Hypoglycemic Agents, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Mice, Transgenic, Phenotype, Signal Transduction, Sulfonylurea Compounds, Tolbutamide, beta-Arrestin 1, beta-Arrestin 2
Show Abstract · Added March 18, 2020
Beta-arrestin-1 and -2 (Barr1 and Barr2, respectively) are intracellular signaling molecules that regulate many important metabolic functions. We previously demonstrated that mice lacking Barr2 selectively in pancreatic beta-cells showed pronounced metabolic impairments. Here we investigated whether Barr1 plays a similar role in regulating beta-cell function and whole body glucose homeostasis. Initially, we inactivated the Barr1 gene in beta-cells of adult mice (beta-barr1-KO mice). Beta-barr1-KO mice did not display any obvious phenotypes in a series of in vivo and in vitro metabolic tests. However, glibenclamide and tolbutamide, two widely used antidiabetic drugs of the sulfonylurea (SU) family, showed greatly reduced efficacy in stimulating insulin secretion in the KO mice in vivo and in perifused KO islets in vitro. Additional in vivo and in vitro studies demonstrated that Barr1 enhanced SU-stimulated insulin secretion by promoting SU-mediated activation of Epac2. Pull-down and co-immunoprecipitation experiments showed that Barr1 can directly interact with Epac2 and that SUs such as glibenclamide promote Barr1/Epac2 complex formation, triggering enhanced Rap1 signaling and insulin secretion. These findings suggest that strategies aimed at promoting Barr1 signaling in beta-cells may prove useful for the development of efficacious antidiabetic drugs.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Point mutations in the PDX1 transactivation domain impair human β-cell development and function.
Wang X, Sterr M, Ansarullah , Burtscher I, Böttcher A, Beckenbauer J, Siehler J, Meitinger T, Häring HU, Staiger H, Cernilogar FM, Schotta G, Irmler M, Beckers J, Wright CVE, Bakhti M, Lickert H
(2019) Mol Metab 24: 80-97
MeSH Terms: Adult, Carboxylic Ester Hydrolases, Cell Differentiation, Cell Line, Diabetes Mellitus, Female, Homeodomain Proteins, Humans, Insulin Secretion, Insulin-Secreting Cells, Loss of Function Mutation, Male, Point Mutation, Protein Domains, RNA, Long Noncoding, Trans-Activators, Transcription Factors
Show Abstract · Added April 2, 2019
OBJECTIVE - Hundreds of missense mutations in the coding region of PDX1 exist; however, if these mutations predispose to diabetes mellitus is unknown.
METHODS - In this study, we screened a large cohort of subjects with increased risk for diabetes and identified two subjects with impaired glucose tolerance carrying common, heterozygous, missense mutations in the PDX1 coding region leading to single amino acid exchanges (P33T, C18R) in its transactivation domain. We generated iPSCs from patients with heterozygous PDX1, PDX1 mutations and engineered isogenic cell lines carrying homozygous PDX1, PDX1 mutations and a heterozygous PDX1 loss-of-function mutation (PDX1).
RESULTS - Using an in vitro β-cell differentiation protocol, we demonstrated that both, heterozygous PDX1, PDX1 and homozygous PDX1, PDX1 mutations impair β-cell differentiation and function. Furthermore, PDX1 and PDX1 mutations reduced differentiation efficiency of pancreatic progenitors (PPs), due to downregulation of PDX1-bound genes, including transcription factors MNX1 and PDX1 as well as insulin resistance gene CES1. Additionally, both PDX1 and PDX1 mutations in PPs reduced the expression of PDX1-bound genes including the long-noncoding RNA, MEG3 and the imprinted gene NNAT, both involved in insulin synthesis and secretion.
CONCLUSIONS - Our results reveal mechanistic details of how common coding mutations in PDX1 impair human pancreatic endocrine lineage formation and β-cell function and contribute to the predisposition for diabetes.
Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion.
Sedgeman LR, Beysen C, Ramirez Solano MA, Michell DL, Sheng Q, Zhao S, Turner S, Linton MF, Vickers KC
(2019) Sci Rep 9: 3803
MeSH Terms: Animals, Biological Transport, Cell Cycle, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Islets of Langerhans, Lipoproteins, HDL, Mice, Mice, Transgenic, MicroRNAs
Show Abstract · Added April 10, 2019
Extracellular microRNAs (miRNAs) are a new class of biomarkers for cellular phenotypes and disease, and are bioactive signals within intercellular communication networks. Previously, we reported that miRNAs are secreted from macrophage to high-density lipoproteins (HDL) and delivered to recipient cells to regulate gene expression. Despite the potential importance of HDL-miRNAs, regulation of HDL-miRNA export from cells has not been fully studied. Here, we report that pancreatic islets and beta cells abundantly export miR-375-3p to HDL and this process is inhibited by cellular mechanisms that promote insulin secretion. Small RNA sequencing and PCR approaches were used to quantify beta cell miRNA export to HDL. Strikingly, high glucose conditions were found to inhibit HDL-miR-375-3p export, which was dependent on extracellular calcium. Likewise, stimulation of cAMP was found to repress HDL-miR-375-3p export. Furthermore, we found that beta cell ATP-sensitive potassium channel (K) channels are required for HDL-miRNA export as chemical inhibition (tolbutamide) and global genetic knockout (Abcc8) approaches inhibited HDL-miR-375-3p export. This process is not likely associated with cholesterol flux, as gain-of-function and loss-of-function studies for cholesterol transporters failed to alter HDL-miR-375-3p export. In conclusion, results support that pancreatic beta cells export miR-375-3p to HDL and this process is inversely regulated to insulin secretion.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Genome-wide interaction with the insulin secretion locus MTNR1B reveals CMIP as a novel type 2 diabetes susceptibility gene in African Americans.
Keaton JM, Gao C, Guan M, Hellwege JN, Palmer ND, Pankow JS, Fornage M, Wilson JG, Correa A, Rasmussen-Torvik LJ, Rotter JI, Chen YI, Taylor KD, Rich SS, Wagenknecht LE, Freedman BI, Ng MCY, Bowden DW
(2018) Genet Epidemiol 42: 559-570
MeSH Terms: Adaptor Proteins, Signal Transducing, Adult, African Americans, Aged, Body Mass Index, Case-Control Studies, Diabetes Mellitus, Type 2, Epistasis, Genetic, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Insulin, Insulin Secretion, Male, Middle Aged, Models, Genetic, Polymorphism, Single Nucleotide, Receptor, Melatonin, MT2
Show Abstract · Added March 3, 2020
Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (P = 1.43 × 10 ; P = 4.70 × 10 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci.
© 2018 WILEY PERIODICALS, INC.
0 Communities
1 Members
0 Resources
MeSH Terms
Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca Sensitivity of Insulin Secretion Vesicles.
Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G
(2018) Dev Cell 45: 347-361.e5
MeSH Terms: Animals, Biological Transport, Calcium, Cell Differentiation, Female, Gene Expression Regulation, Glucose, Humans, Hypoglycemic Agents, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Sweetening Agents, Synaptotagmins
Show Abstract · Added April 17, 2018
Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca concentrations, suggesting differences in the Ca sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca binding paralog of the β cell Ca sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca sensing plays in regulating β cell maturation.
Copyright © 2018 Elsevier Inc. All rights reserved.
4 Communities
4 Members
0 Resources
17 MeSH Terms
α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes.
Brissova M, Haliyur R, Saunders D, Shrestha S, Dai C, Blodgett DM, Bottino R, Campbell-Thompson M, Aramandla R, Poffenberger G, Lindner J, Pan FC, von Herrath MG, Greiner DL, Shultz LD, Sanyoura M, Philipson LH, Atkinson M, Harlan DM, Levy SE, Prasad N, Stein R, Powers AC
(2018) Cell Rep 22: 2667-2676
MeSH Terms: Adolescent, Adult, Animals, Case-Control Studies, Cellular Reprogramming, Child, Diabetes Mellitus, Type 1, Female, Gene Expression Regulation, Glucagon, Glucagon-Secreting Cells, Humans, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Middle Aged, Phenotype, Tissue Donors, Transcription Factors, Young Adult
Show Abstract · Added March 8, 2018
Many patients with type 1 diabetes (T1D) have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
4 Members
0 Resources
21 MeSH Terms
Cytokine-mediated changes in K channel activity promotes an adaptive Ca response that sustains β-cell insulin secretion during inflammation.
Dickerson MT, Bogart AM, Altman MK, Milian SC, Jordan KL, Dadi PK, Jacobson DA
(2018) Sci Rep 8: 1158
MeSH Terms: Adult, Animals, Calcium, Female, Gene Expression Regulation, Glucose, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Interferon-gamma, Interleukin-1beta, Ion Transport, Islets of Langerhans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Potassium, Potassium Channels, Tandem Pore Domain, Primary Cell Culture, RNA, Messenger, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Tissue Culture Techniques, Tumor Necrosis Factor-alpha
Show Abstract · Added February 7, 2018
Cytokines present during low-grade inflammation contribute to β-cell dysfunction and diabetes. Cytokine signaling disrupts β-cell glucose-stimulated Ca influx (GSCI) and endoplasmic reticulum (ER) Ca ([Ca]) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter β-cell Ca handling remain unknown. Here we investigated the role of K currents in cytokine-mediated β-cell dysfunction. K currents, which control the termination of intracellular Ca ([Ca]) oscillations, were reduced following cytokine exposure. As a consequence, [Ca] and electrical oscillations were accelerated. Cytokine exposure also increased basal islet [Ca] and decreased GSCI. The effect of cytokines on TALK-1 K currents were also examined as TALK-1 mediates K by facilitating [Ca] release. Cytokine exposure decreased KCNK16 transcript abundance and associated TALK-1 protein expression, increasing [Ca] storage while maintaining 2 phase GSCI and GSIS. This adaptive Ca response was absent in TALK-1 KO islets, which exhibited decreased 2 phase GSCI and diminished GSIS. These findings suggest that K and TALK-1 currents play important roles in altered β-cell Ca handling and electrical activity during low-grade inflammation. These results also reveal that a cytokine-mediated reduction in TALK-1 serves an acute protective role in β-cells by facilitating increased Ca content to maintain GSIS.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion.
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, Nano R, Piemonti L, Rutter GA, Jacobson DA, Lavery GG, Hodson DJ
(2018) Diabetes 67: 278-290
MeSH Terms: 11-beta-Hydroxysteroid Dehydrogenase Type 1, Animals, Biomarkers, Calcium Channels, Calcium Signaling, Cell Differentiation, Corticosterone, Cortisone, Cyclic AMP, Glucocorticoids, Glucose, Humans, Hydrocortisone, Insulin, Insulin Secretion, Insulin-Secreting Cells, Kinetics, Mice, Inbred Strains, Mice, Knockout, Tissue Culture Techniques
Show Abstract · Added December 6, 2017
Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca channel function and Ca fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
20 MeSH Terms