The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.
If you have any questions or comments, please contact us.
BACKGROUND - The increasing worldwide prevalence of coronary artery disease (CAD) continues to challenge the medical community. Management options include medical and revascularization therapy. Despite advances in these methods, CAD is a leading cause of recurrent ischemia and heart failure, posing significant morbidity and mortality risks along with increasing health costs in a large patient population worldwide.
TRIAL DESIGN - The Cardiovascular Cell Therapy Research Network (CCTRN) was established by the National Institutes of Health to investigate the role of cell therapy in the treatment of chronic cardiovascular disease. FOCUS is a CCTRN-designed randomized, phase II, placebo-controlled clinical trial that will assess the effect of autologous bone marrow mononuclear cells delivered transendocardially to patients with left ventricular (LV) dysfunction and symptomatic heart failure or angina. All patients need to have limiting ischemia by reversible ischemia on single-photon emission computed tomography assessment.
RESULTS - After thoughtful consideration of both statistical and clinical principles, we will recruit 87 patients (58 cell treated and 29 placebo) to receive either bone marrow-derived stem cells or placebo. Myocardial perfusion, LV contractile performance, and maximal oxygen consumption are the primary outcome measures.
CONCLUSIONS - The designed clinical trial will provide a sound assessment of the effect of autologous bone marrow mononuclear cells in improving blood flow and contractile function of the heart. The target population is patients with CAD and LV dysfunction with limiting angina or symptomatic heat failure. Patient safety is a central concern of the CCTRN, and patients will be followed for at least 5 years.
Copyright 2010 Mosby, Inc. All rights reserved.
BACKGROUND - Overweight and hepatic steatosis can increase the risk of hepatocarcinogenesis. In addition, overweight may affect the treatment efficacy of ultrasound-guided percutaneous ablation. We evaluated the impact of overweight on the safety and efficacy of percutaneous ablation to hepatocellular carcinoma (HCC).
METHODS - We enrolled 743 patients with naïve HCC who were treated by percutaneous ablation including ethanol injection, microwave coagulation, and radiofrequency ablation (RFA) between 1995 and 2003. Patients were divided into two groups by body mass index (BMI): 219 overweight patients with BMI>25 kg/m2 and 524 control patients with BMIRESULTS - The overweight group required a significantly larger number of sessions by RFA (P=0.01). Major complications were identified in 8.7% in the overweight group and 7.6% in the control group (P=0.94). There was no significant difference in cumulative recurrence rate and local tumor-progression rate between the two groups (P=0.63 and 0.44). Cumulative survival rates at 1, 3, and 5 years were 95.4%, 75.7%, and 57.8%, respectively, in the overweight group and 94.1%, 78.0%, and 58.8% in the control group (P=0.99).
CONCLUSIONS - The results indicated that overweight did not increase complications nor affect HCC recurrence and overall survival. However, the number of sessions of RFA was significantly greater in overweight patients, suggesting that overweight was associated with minor technical difficulties.
UNLABELLED - DO was used in an aged mouse model to determine if systemically and/or locally administered rhIGF-I improved osteoblastogenesis and new bone formation. Local and systemic rhIGF-I treatment increased new bone formation. However, only systemic delivery produced measurable concentrations of rhIGF-I in the circulation.
INTRODUCTION - Human and rodent research supports a primary role for IGF-I in bone formation. Significant roles for both endocrine and paracrine/autocrine IGF-I have been suggested for normal osteoblastogenesis and bone formation. We have assessed, using a mouse model of distraction osteogenesis (DO), the impact of continuous administration of recombinant human (rh)IGF-I, delivered either locally to the distraction site or absorbed systemically, on bone formation in an aged mouse model.
MATERIALS AND METHODS - DO was performed in aged mice (18-month-old C57BL/6 male mice), which were distracted at 0.15 mm daily. At the time of osteotomy, miniosmotic pumps were inserted subcutaneously to (1) deliver vehicle or rhIGF-I subcutaneously for systemic delivery or (2) deliver vehicle or rhIGF-I directly to the newly forming bone through infusion tubing routed subcutaneously from the pump to the distraction site. Serum concentrations of mouse IGF-I, human IGF-I, and osteocalcin were determined at the end of the study.
RESULTS - New bone formation observed in DO gaps showed a significant increase in new bone formation in rhIGF-I-treated mice, irrespective of delivery route. However, detectable levels of human IGF-I were found only in the serum of animals receiving rhIGF-I systemically. Osteocalcin levels did not differ between controls and rhIGF-I-treated groups.
CONCLUSIONS - Locally and systemically delivered rhIGF-I both produce significant increases in new bone formed in an aged mouse model in which new bone formation is normally markedly impaired, suggesting that rhIGF-I may improve senile osteoporosis. Because systemic administration of IGF-I can result in untoward side effects, including an increased risk for cancer, the findings that locally delivered IGF-I improves bone regeneration without increasing circulating IGF-I levels suggests that this delivery route may be preferable in an at-risk, aged population.
We developed a novel mouse model of malignant pleural effusion (MPE) by injecting Lewis lung cancer (LLC) cells directly into the pleural space of syngeneic C57B/6 mice. The pleural effusions in this model share common cellular and biochemical features with human MPEs. Implantation and growth of pleural tumors triggers a host inflammatory response characterized by a mixed inflammatory cell influx into the pleural fluid. LLC cells exhibited high basal nuclear factor (NF)-kappaB activity in vitro and in vivo, which we used to drive expression of a NF-kappaB-dependent green fluorescent protein-firefly luciferase fusion reporter construct. NF-kappaB-dependent reporter expression allowed intravital tracing of pleural tumors. Inhibition of NF-kappaB in LLC cells did not affect cell viability in culture; however, injection of LLC cells expressing a dominant NF-kappaB inhibitor resulted in decreased tumor burden, decreased pleural effusion volume, and decreased pleural effusion TNF-alpha levels. These studies indicate that tumor NF-kappaB activity regulates pleural tumor progression. This reproducible model of MPE can be used to further study the influence of specific host and tumor factors on the pathogenesis of MPE and evaluate new therapeutic strategies.
Replication-incompetent adenoviruses (Ad) carrying the herpes simplex thymidine kinase (HSVtk) gene have been used in a number of human cancer gene therapy trials, however transduction has generally been limited to a small minority of tumor cells. To solve this problem, replication-competent adenoviral vectors carrying transgenes such as HSVtk have been developed. However, contradictory evidence exists regarding the efficacy of these new vectors. Accordingly, we constructed and tested a replication-competent E3-deleted adenoviral vector containing the HSVtk suicide gene driven by the endogenous E3 promoter (Ad.wt.tk). This virus showed high level production of the HSVtk transgene and was more efficacious than a non-replicating virus in vitro, after injection into flank tumors, and against established intraperitoneal tumors. However, addition of ganciclovir (GCV) therapy to cells or tumor-bearing animals treated with the replicating vector containing the HSVtk suicide gene did not result in increased cell killing. Our results indicate that addition of HSVtk to a replicating Ad virus will not likely be useful in augmenting antitumor effects.
PURPOSE - To determine the safety and tolerability of adenovirus-mediated p53 (Adp53) gene transfer in sequence with cisplatin when given by intratumor injection in patients with non-small-cell lung cancer (NSCLC).
PATIENTS AND METHODS - Patients with advanced NSCLC and abnormal p53 function were enrolled onto cohorts receiving escalating dose levels of Adp53 (1 x 10(6) to 1 x 10(11) plaque-forming units [PFU]). Patients were administered intravenous cisplatin 80 mg/m(2) on day 1 and study vector on day 4 for a total of up to six courses (28 days per course). Apoptosis was determined by the terminal deoxynucleotidyl- transferase-dUTP nick-end labeling assay. Evidence of vector-specific sequences were determined using reverse-transcriptase polymerase chain reaction. Vector dissemination and biodistribution was monitored using a series of assays (cytopathic effects assay, Ad5 hexon enzyme-linked immunosorbent assay, vector-specific polymerase chain reaction assay, and antibody response assay).
RESULTS - Twenty-four patients (median age, 64 years) received a total of 83 intratumor injections with Adp53. The maximum dose administered was 1 x 10(11) PFU per dose. Transient fever related to Adp53 injection developed in eight of 24 patients. Seventeen patients achieved a best clinical response of stable disease, two patients achieved a partial response, four patients had progressive disease, and one patient was not assessable. A mean apoptotic index between baseline and follow-up measurements increased from 0.010 to 0.044 (P =.011). Intratumor transgene mRNA was identified in 43% of assessable patients.
CONCLUSION - Intratumoral injection with Adp53 in combination with cisplatin is well tolerated, and there is evidence of clinical activity.