Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 78

Publication Record

Connections

Erythropoietin either Prevents or Exacerbates Retinal Damage from Eye Trauma Depending on Treatment Timing.
Bricker-Anthony C, D'Surney L, Lunn B, Hines-Beard J, Jo M, Bernardo-Colon A, Rex TS
(2017) Optom Vis Sci 94: 20-32
MeSH Terms: Animals, Blast Injuries, Cell Survival, Dependovirus, Disease Models, Animal, Erythropoietin, Eye Injuries, Ferritins, Genetic Therapy, Genetic Vectors, Green Fluorescent Proteins, In Situ Nick-End Labeling, Injections, Intramuscular, Injections, Intraperitoneal, Mice, Mice, Inbred BALB C, Mice, Inbred DBA, NADPH Oxidases, Oxidative Stress, Polymerase Chain Reaction, Retina, Retinal Diseases, Time Factors, Vision Disorders, Wounds, Nonpenetrating
Show Abstract · Added April 2, 2019
PURPOSE - Erythropoietin (EPO) is a promising neuroprotective agent and is currently in Phase III clinical trials for the treatment of traumatic brain injury. The goal of this study was to determine if EPO is also protective in traumatic eye injury.
METHODS - The left eyes of anesthetized DBA/2J or Balb/c mice were exposed to a single 26 psi overpressure air-wave while the rest of the body was shielded. DBA/2J mice were given intraperitoneal injections of EPO or buffer and analyses were performed at 3 or 7 days post-blast. Balb/c mice were given intramuscular injections of rAAV.EpoR76E or rAAV.eGFP either pre- or post-blast and analyses were performed at 1 month post-blast.
RESULTS - EPO had a bimodal effect on cell death, glial reactivity, and oxidative stress. All measures were increased at 3 days post-blast and decreased at 7-days post-blast. Increased retinal ferritin and NADPH oxygenases were detected in retinas from EPO-treated mice. The gene therapy approach protected against axon degeneration, cell death, and oxidative stress when given after blast, but not before.
CONCLUSIONS - Systemic, exogenous EPO and EPO-R76E protects the retina after trauma even when initiation of treatment is delayed by up to 3 weeks. Systemic treatment with EPO or EPO-R76E beginning before or soon after trauma may exacerbate protective effects of EPO within the retina as a result of increased iron levels from erythropoiesis and, thus, increased oxidative stress within the retina. This is likely overcome with time as a result of an increase in levels of antioxidant enzymes. Either intraocular delivery of EPO or treatment with non-erythropoietic forms of EPO may be more efficacious.
0 Communities
1 Members
0 Resources
MeSH Terms
β-catenin in the alveolar epithelium protects from lung fibrosis after intratracheal bleomycin.
Tanjore H, Degryse AL, Crossno PF, Xu XC, McConaha ME, Jones BR, Polosukhin VV, Bryant AJ, Cheng DS, Newcomb DC, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE
(2013) Am J Respir Crit Care Med 187: 630-9
MeSH Terms: Animals, Bleomycin, Disease Models, Animal, Epithelium, In Situ Nick-End Labeling, Lung Injury, Mice, Mice, Transgenic, Pulmonary Alveoli, Pulmonary Fibrosis, Wound Healing, beta Catenin
Show Abstract · Added March 5, 2014
RATIONALE - Alveolar epithelial cells (AECs) play central roles in the response to lung injury and the pathogenesis of pulmonary fibrosis.
OBJECTIVES - We aimed to determine the role of β-catenin in alveolar epithelium during bleomycin-induced lung fibrosis.
METHODS - Genetically modified mice were developed to selectively delete β-catenin in AECs and were crossed to cell fate reporter mice that express β-galactosidase (βgal) in cells of AEC lineage. Mice were given intratracheal bleomycin (0.04 units) and assessed for AEC death, inflammation, lung injury, and fibrotic remodeling. Mouse lung epithelial cells (MLE12) with small interfering RNA knockdown of β-catenin underwent evaluation for wound closure, proliferation, and bleomycin-induced cytotoxicity.
MEASUREMENTS AND MAIN RESULTS - Increased β-catenin expression was noted in lung parenchyma after bleomycin. Mice with selective deletion of β-catenin in AECs had greater AEC death at 1 week after bleomycin, followed by increased numbers of fibroblasts and enhanced lung fibrosis as determined by semiquantitative histological scoring and total collagen content. However, no differences in lung inflammation or protein levels in bronchoalveolar lavage were noted. In vitro, β-catenin-deficient AECs showed increased bleomycin-induced cytotoxicity as well as reduced proliferation and impaired wound closure. Consistent with these findings, mice with AEC β-catenin deficiency showed delayed recovery after bleomycin.
CONCLUSIONS - β-Catenin in the alveolar epithelium protects against bleomycin-induced fibrosis. Our studies suggest that AEC survival and wound healing are enhanced through β-catenin-dependent mechanisms. Activation of the developmentally important β-catenin pathway in AECs appears to contribute to epithelial repair after epithelial injury.
1 Communities
2 Members
0 Resources
12 MeSH Terms
Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association.
Bhattacharya S, Chaum E, Johnson DA, Johnson LR
(2012) Invest Ophthalmol Vis Sci 53: 8350-66
MeSH Terms: Acetylation, Adult, Aged, Aged, 80 and over, Aging, Apoptosis, Apoptosis Regulatory Proteins, Benzamides, Blotting, Western, Caspase 3, Cell Proliferation, Cells, Cultured, DNA Fragmentation, Disease Susceptibility, Enzyme-Linked Immunosorbent Assay, Fluorescent Antibody Technique, Indirect, Humans, Imidazoles, In Situ Nick-End Labeling, Middle Aged, Naphthols, Phosphorylation, Piperazines, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-mdm2, RNA, Small Interfering, Retinal Pigment Epithelium, Sirtuin 1, Sirtuin 2, Tumor Suppressor Protein p53
Show Abstract · Added June 11, 2018
PURPOSE - Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD).
METHODS - Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53.
RESULTS - We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis.
CONCLUSIONS - Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD.
0 Communities
1 Members
0 Resources
MeSH Terms
FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.
Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L
(2011) Development 138: 5099-112
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Differentiation, Cell Lineage, Cells, Cultured, Epidermal Growth Factor, Fibroblast Growth Factors, Galactosides, In Situ Nick-End Labeling, Indoles, Membrane Proteins, Mice, Microscopy, Fluorescence, Nephrons, Nuclear Proteins, Phosphatidylinositol 3-Kinases, Phosphoproteins, Polymerase Chain Reaction, Receptor Protein-Tyrosine Kinases, Signal Transduction, Trans-Activators, ras Proteins
Show Abstract · Added March 20, 2014
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.
2 Communities
1 Members
0 Resources
22 MeSH Terms
Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.
Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M
(2011) Proc Natl Acad Sci U S A 108: 15972-7
MeSH Terms: AMP-Activated Protein Kinases, Animals, Apoptosis, B-Lymphocytes, Biological Transport, Cells, Cultured, Enzyme Activation, Female, Glucose, Glycolysis, Immunoblotting, In Situ Nick-End Labeling, Interleukin-4, Lymphoma, Male, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Oxidative Phosphorylation, Poly(ADP-ribose) Polymerases, STAT6 Transcription Factor, Survival Analysis
Show Abstract · Added December 10, 2013
Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.
2 Communities
3 Members
0 Resources
24 MeSH Terms
Bursicon-expressing neurons undergo apoptosis after adult ecdysis in the mosquito Anopheles gambiae.
Honegger HW, Estévez-Lao TY, Hillyer JF
(2011) J Insect Physiol 57: 1017-22
MeSH Terms: Animals, Anopheles, Apoptosis, Female, Ganglia, Invertebrate, Gene Expression Regulation, Developmental, In Situ Nick-End Labeling, Invertebrate Hormones, Larva, Male, Molting, Neurons, Neuropeptides, Pupa, Reverse Transcriptase Polymerase Chain Reaction
Show Abstract · Added February 5, 2016
Neuropeptides are important regulators of diverse processes during development. The insect neuropeptide bursicon, a 30 kDa heterodimer, controls the hardening of the new cuticle after the shedding of the old one (ecdysis) and the inflation and maturation of adult wings. Given this specific functional role, its expression should only be required transiently because adult insects no longer undergo ecdysis. Here we report the transient expression of bursicon in the mosquito, Anopheles gambiae. Quantitative RT-PCR revealed that transcription of the bursicon monomers, burs and pburs, steadily increases through the larval stages, peaks in the black pupa stage, and decreases to below detectable levels by 8 h after adult ecdysis (eclosion). Immunohistochemistry on the adult nervous system showed that bursicon is co-expressed with crustacean cardioactive peptide (CCAP) in specific neurons of the abdominal ganglia, but that labeling intensity wanes by 14 h post-eclosion. Finally, detection of disintegrating DNA by TUNEL labeling demonstrated that the bursicon expressing neurons successively undergo apoptosis following eclosion. Taken altogether, these data describe A. gambiae as another holometabolous insect in which bursicon ceases to be produced in adults, and in which the bursicon expressing neurons are removed from the ventral nerve cord.
Copyright © 2011 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways.
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M
(2010) Immunity 32: 743-53
MeSH Terms: Animals, Cell Differentiation, Cell Separation, Flow Cytometry, Immunoblotting, In Situ Nick-End Labeling, Lymphocyte Activation, Mice, Protein Kinase C, Proto-Oncogene Proteins c-akt, Signal Transduction, T-Lymphocyte Subsets, TOR Serine-Threonine Kinases, Th1 Cells, Th2 Cells, Transfection
Show Abstract · Added December 10, 2013
Many functions of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) have been defined, but relatively little is known about the biology of an alternative mTOR complex, mTORC2. We showed that conditional deletion of rictor, an essential subunit of mTORC2, impaired differentiation into T helper 1 (Th1) and Th2 cells without diversion into FoxP3(+) status or substantial effect on Th17 cell differentiation. mTORC2 promoted phosphorylation of protein kinase B (PKB, or Akt) and PKC, Akt activity, and nuclear NF-kappaB transcription factors in response to T cell activation. Complementation with active Akt restored only T-bet transcription factor expression and Th1 cell differentiation, whereas activated PKC-theta reverted only GATA3 transcription factor and the Th2 cell defect of mTORC2 mutant cells. Collectively, the data uncover vital mTOR-PKC and mTOR-Akt connections in T cell differentiation and reveal distinct pathways by which mTORC2 regulates development of Th1 and Th2 cell subsets.
Copyright 2010 Elsevier Inc. All rights reserved.
3 Communities
3 Members
0 Resources
16 MeSH Terms
Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis.
Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE
(2010) Am J Physiol Lung Cell Mol Physiol 299: L442-52
MeSH Terms: Animals, Antibiotics, Antineoplastic, Apoptosis, Bleomycin, Bronchoalveolar Lavage Fluid, Cell Proliferation, Cells, Cultured, Disease Models, Animal, Epithelial Cells, Fibroblasts, Fluorescent Antibody Technique, Humans, Idiopathic Pulmonary Fibrosis, Immunoenzyme Techniques, In Situ Nick-End Labeling, Integrases, Intubation, Intratracheal, Mesoderm, Mice, Mice, Inbred C57BL, Mice, Transgenic, beta-Galactosidase
Show Abstract · Added March 5, 2014
Single-dose intratracheal bleomycin has been instrumental for understanding fibrotic lung remodeling, but fails to recapitulate several features of idiopathic pulmonary fibrosis (IPF). Since IPF is thought to result from recurrent alveolar injury, we aimed to develop a repetitive bleomycin model that results in lung fibrosis with key characteristics of human disease, including alveolar epithelial cell (AEC) hyperplasia. Wild-type and cell fate reporter mice expressing β-galactosidase in cells of lung epithelial lineage were given intratracheal bleomycin after intubation, and lungs were harvested 2 wk after a single or eighth biweekly dose. Lungs were evaluated for fibrosis and collagen content. Bronchoalveolar lavage (BAL) was performed for cell counts. TUNEL staining and immunohistochemistry were performed for pro-surfactant protein C (pro-SP-C), Clara cell 10 (CC-10), β-galactosidase, S100A4, and α-smooth muscle actin. Lungs from repetitive bleomycin mice had marked fibrosis with prominent AEC hyperplasia, similar to usual interstitial pneumonia (UIP). Compared with single dosing, repetitive bleomycin mice had greater fibrosis by scoring, morphometry, and collagen content; increased TUNEL+ AECs; and reduced inflammatory cells in BAL. Sixty-four percent of pro-SP-C+ cells in areas of fibrosis expressed CC-10 in the repetitive model, suggesting expansion of a bronchoalveolar stem cell-like population. In reporter mice, 50% of S100A4+ lung fibroblasts were derived from epithelial mesenchymal transition compared with 33% in the single-dose model. With repetitive bleomycin, fibrotic remodeling persisted 10 wk after the eighth dose. Repetitive intratracheal bleomycin results in marked lung fibrosis with prominent AEC hyperplasia, features reminiscent of UIP.
1 Communities
2 Members
0 Resources
22 MeSH Terms
Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation.
Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S
(2010) Arterioscler Thromb Vasc Biol 30: 787-95
MeSH Terms: Animals, Apolipoproteins E, Apoptosis, Atherosclerosis, Cell Survival, Cells, Cultured, Enzyme Activation, Female, In Situ Nick-End Labeling, Inflammation, Interleukin-1beta, Interleukin-6, Lipopolysaccharides, Lipoproteins, LDL, Macrophages, Peritoneal, Mice, Mice, Knockout, Necrosis, Phagocytosis, Phosphorylation, Proto-Oncogene Proteins c-akt, Receptors, LDL, Tumor Necrosis Factor-alpha, Tumor Suppressor Proteins
Show Abstract · Added May 27, 2014
OBJECTIVE - The balance between apoptosis susceptibility and efferocytosis of macrophages is central to plaque remodeling and inflammation. LRP-1 and its ligand, apolipoprotein E, have been implicated in efferocytosis and apoptosis in some cell types. We investigated the involvement of the macrophage LRP-1/apolipoprotein E axis in controlling plaque apoptosis and efferocytosis. Method and Results- LRP-1(-/-) macrophages displayed nearly 2-fold more TUNEL positivity compared to wild-type cells in the presence of DMEM alone or with either lipopolysaccharide or oxidized low-density lipoprotein. The survival kinase, phosphorylated Akt, was barely detectable in LRP-1(-/-) cells, causing decreased phosphorylated Bad and increased cleaved caspase-3. Regardless of the apoptotic stimulation and degree of cell death, LRP-1(-/-) macrophages displayed enhanced inflammation with increased IL-1 beta, IL-6, and tumor necrosis factor-alpha expression. Efferocytosis of apoptotic macrophages was reduced by 60% in LRP-1(-/-) vs wild-type macrophages despite increased apolipoprotein E expression by both LRP-1(-/-) phagocytes and wild-type apoptotic cells. Compared to wild-type macrophage lesions, LRP-1(-/-) lesions had 5.7-fold more necrotic core with more dead cells not associated with macrophages.
CONCLUSIONS - Macrophage LRP-1 deficiency increases cell death and inflammation by impairing phosphorylated Akt activation and efferocytosis. Increased apolipoprotein E expression in LRP-1(-/-) macrophages suggests that the LRP-1/apolipoprotein E axis regulates the balance between apoptosis and efferocytosis, thereby preventing necrotic core formation.
0 Communities
1 Members
0 Resources
24 MeSH Terms
AP-2alpha knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis.
Bassett EA, Williams T, Zacharias AL, Gage PJ, Fuhrmann S, West-Mays JA
(2010) Hum Mol Genet 19: 1791-804
MeSH Terms: Animals, DNA Primers, Disease Models, Animal, Eye Abnormalities, Fluorescent Antibody Technique, Gene Expression Regulation, Developmental, Hedgehog Proteins, In Situ Hybridization, In Situ Nick-End Labeling, Mice, Mice, Knockout, Morphogenesis, Optic Nerve, Polymerase Chain Reaction, Prosencephalon, Retina, Signal Transduction, Transcription Factor AP-2
Show Abstract · Added November 19, 2015
Appropriate development of the retina and optic nerve requires that the forebrain-derived optic neuroepithelium undergoes a precisely coordinated sequence of patterning and morphogenetic events, processes which are highly influenced by signals from adjacent tissues. Our previous work has suggested that transcription factor activating protein-2 alpha (AP-2alpha; Tcfap2a) has a non-cell autonomous role in optic cup (OC) development; however, it remained unclear how OC abnormalities in AP-2alpha knockout (KO) mice arise at the morphological and molecular level. In this study, we show that patterning and morphogenetic defects in the AP-2alpha KO optic neuroepithelium begin at the optic vesicle stage. During subsequent OC formation, ectopic neural retina and optic stalk-like tissue replaced regions of retinal pigment epithelium. AP-2alpha KO eyes also displayed coloboma in the ventral retina, and a rare phenotype in which the optic stalk completely failed to extend, causing the OCs to be drawn inward to the midline. We detected evidence of increased sonic hedgehog signaling in the AP-2alpha KO forebrain neuroepithelium, which likely contributed to multiple aspects of the ocular phenotype, including expansion of PAX2-positive optic stalk-like tissue into the OC. Our data suggest that loss of AP-2alpha in multiple tissues in the craniofacial region leads to severe OC and optic stalk abnormalities by disturbing the tissue-tissue interactions required for ocular development. In view of recent data showing that mutations in human TFAP2A result in similar eye defects, the current findings demonstrate that AP-2alpha KO mice provide a valuable model for human ocular disease.
0 Communities
1 Members
0 Resources
18 MeSH Terms