Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 15

Publication Record

Connections

Human Gene-Encoded Human Monoclonal Antibodies against Staphylococcus aureus IsdB Use at Least Three Distinct Modes of Binding To Inhibit Bacterial Growth and Pathogenesis.
Bennett MR, Dong J, Bombardi RG, Soto C, Parrington HM, Nargi RS, Schoeder CT, Nagel MB, Schey KL, Meiler J, Skaar EP, Crowe JE
(2019) mBio 10:
MeSH Terms: Adaptive Immunity, Antibodies, Monoclonal, Crystallography, X-Ray, Humans, Immunity, Humoral, Proteomics, Staphylococcus aureus
Show Abstract · Added March 21, 2020
is an important human pathogen that infects nearly every human tissue. Like most organisms, the acquisition of nutrient iron is necessary for its survival. One route by which it obtains this metal is through the iron-regulated surface determinant (Isd) system that scavenges iron from the hemoglobin of the host. We show that the heavy chain variable region gene commonly encodes human monoclonal antibodies (mAbs) targeting IsdB-NEAT2. Remarkably, these antibodies bind to multiple antigenic sites. One class of -encoded mAbs blocks heme acquisition by binding to the heme-binding site of NEAT2, while two additional classes reduce the bacterial burden by an alternative Fc receptor-mediated mechanism. We further identified clonal lineages of -encoded mAbs using donor samples, showing that each lineage diversifies during infection by somatic hypermutation. These studies reveal that encoded antibodies contribute to a protective immune response, furthering our understanding of the correlates of protection against infection. The human pathogen causes a wide range of infections, including skin abscesses and sepsis. There is currently no licensed vaccine to prevent infection, and its treatment has become increasingly difficult due to antibiotic resistance. One potential way to inhibit pathogenesis is to prevent iron acquisition. The iron-regulated surface determinant (Isd) system has evolved in to acquire hemoglobin from the human host as a source of heme-iron. In this study, we investigated the molecular and structural basis for antibody-mediated correlates against a member of the Isd system, IsdB. The association of immunoglobulin heavy chain variable region gene-encoded human monoclonal antibodies with the response against IsdB is described using structural and functional studies to define the importance of this antibody class. We also determine that somatic hypermutation in the development of these antibodies hinders rather than fine-tunes the immune response to IsdB.
Copyright © 2019 Bennett et al.
0 Communities
2 Members
0 Resources
7 MeSH Terms
Hypoxia-inducible factors in CD4 T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity.
Cho SH, Raybuck AL, Blagih J, Kemboi E, Haase VH, Jones RG, Boothby MR
(2019) Proc Natl Acad Sci U S A 116: 8975-8984
MeSH Terms: Animals, Antibody Formation, B-Lymphocytes, Basic Helix-Loop-Helix Transcription Factors, CD4-Positive T-Lymphocytes, Cell Hypoxia, Cytokines, Germinal Center, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Immunity, Humoral, Immunization, Lymphocyte Activation, Mice, Mice, Inbred C57BL, Mice, Transgenic, Receptors, CXCR5, Sheep, T-Lymphocytes, Helper-Inducer
Show Abstract · Added April 23, 2019
T cell help in humoral immunity includes interactions of B cells with activated extrafollicular CD4 and follicular T helper (Tfh) cells. Each can promote antibody responses but Tfh cells play critical roles during germinal center (GC) reactions. After restimulation of their antigen receptor (TCR) by B cells, helper T cells act on B cells via CD40 ligand and secreted cytokines that guide Ig class switching. Hypoxia is a normal feature of GC, raising questions about molecular mechanisms governing the relationship between hypoxia response mechanisms and T cell help to antibody responses. Hypoxia-inducible factors (HIF) are prominent among mechanisms that mediate cellular responses to limited oxygen but also are induced by lymphocyte activation. We now show that loss of HIF-1α or of both HIF-1α and HIF-2α in CD4 T cells compromised essential functions in help during antibody responses. HIF-1α depletion from CD4 T cells reduced frequencies of antigen-specific GC B cells, Tfh cells, and overall antigen-specific Ab after immunization with sheep red blood cells. Compound deficiency of HIF-1α and HIF-2α led to humoral defects after hapten-carrier immunization. Further, HIF promoted CD40L expression while restraining the FoxP3-positive CD4 cells in the CXCR5 follicular regulatory population. Glycolysis increases T helper cytokine expression, and HIF promoted glycolysis in T helper cells via TCR or cytokine stimulation, as well as their production of cytokines that direct antibody class switching. Indeed, IFN-γ elaboration by HIF-deficient in vivo-generated Tfh cells was impaired. Collectively, the results indicate that HIF transcription factors are vital components of the mechanisms of help during humoral responses.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Current Understanding of Humoral Immunity to Enterovirus D68.
Vogt MR, Crowe JE
(2018) J Pediatric Infect Dis Soc 7: S49-S53
MeSH Terms: Animals, Antibodies, Neutralizing, Disease Models, Animal, Enterovirus D, Human, Enterovirus Infections, Epitopes, Humans, Immunity, Humoral, Nervous System Diseases, Respiratory Tract Infections, Seroepidemiologic Studies, Vaccination, Viral Vaccines
Show Abstract · Added March 31, 2019
Enterovirus D68 (EV-D68) is a pathogen that causes outbreaks of respiratory illness across the world, mostly in children, and can be especially severe in those with asthma. Clusters of acute flaccid myelitis, a poliomyelitis-like neuromuscular weakness syndrome, often occur concurrent with EV-D68 respiratory outbreaks. Seroepidemiologic studies have found that the serum of nearly everyone older than 2 to 5 years contains anti-EV-D68 neutralizing antibodies, which suggests that EV-D68 is a ubiquitous pathogen of childhood. However, knowledge of the viral epitopes against which the humoral immune response is directed is only inferred from previous studies of related viruses. Although neutralizing antibodies protect newborn mice from lethal EV-D68 inoculation via nonphysiologic routes, cotton rats have a mixed phenotype of both benefit and possible exacerbation when inoculated intranasally. The human antibody response to EV-D68 needs to be studied further to clarify the role of antibodies in protection versus pathogenesis, which might differ among respiratory and neurologic disease phenotypes.
0 Communities
1 Members
0 Resources
MeSH Terms
B Cell-Intrinsic mTORC1 Promotes Germinal Center-Defining Transcription Factor Gene Expression, Somatic Hypermutation, and Memory B Cell Generation in Humoral Immunity.
Raybuck AL, Cho SH, Li J, Rogers MC, Lee K, Williams CL, Shlomchik M, Thomas JW, Chen J, Williams JV, Boothby MR
(2018) J Immunol 200: 2627-2639
MeSH Terms: Animals, B-Lymphocytes, Cell Differentiation, Gene Expression, Germinal Center, Immunity, Humoral, Immunoglobulin G, Immunologic Memory, Lymphocyte Activation, Mechanistic Target of Rapamycin Complex 1, Mice, Mice, Inbred C57BL, Mutation, Plasma Cells, Proto-Oncogene Proteins c-bcl-6, Signal Transduction, Transcription Factors
Show Abstract · Added March 14, 2018
B lymphocytes migrate among varied microenvironmental niches during diversification, selection, and conversion to memory or Ab-secreting plasma cells. Aspects of the nutrient milieu differ within these lymphoid microenvironments and can influence signaling molecules such as the mechanistic target of rapamycin (mTOR). However, much remains to be elucidated as to the B cell-intrinsic functions of nutrient-sensing signal transducers that modulate B cell differentiation or Ab affinity. We now show that the amino acid-sensing mTOR complex 1 (mTORC1) is vital for induction of Bcl6-a key transcriptional regulator of the germinal center (GC) fate-in activated B lymphocytes. Accordingly, disruption of mTORC1 after B cell development and activation led to reduced populations of Ag-specific memory B cells as well as plasma cells and GC B cells. In addition, induction of the germ line transcript that guides activation-induced deaminase in selection of the IgG1 H chain region during class switching required mTORC1. Expression of the somatic mutator activation-induced deaminase was reduced by a lack of mTORC1 in B cells, whereas point mutation frequencies in Ag-specific GC-phenotype B cells were only halved. These effects culminated in a B cell-intrinsic defect that impacted an antiviral Ab response and drastically impaired generation of high-affinity IgG1. Collectively, these data establish that mTORC1 governs critical B cell-intrinsic mechanisms essential for establishment of GC differentiation and effective Ab production.
Copyright © 2018 by The American Association of Immunologists, Inc.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1.
Kwong PD, Chuang GY, DeKosky BJ, Gindin T, Georgiev IS, Lemmin T, Schramm CA, Sheng Z, Soto C, Yang AS, Mascola JR, Shapiro L
(2017) Immunol Rev 275: 108-128
MeSH Terms: AIDS Vaccines, Animals, Antibodies, Neutralizing, B-Lymphocytes, Computational Biology, HIV Antibodies, HIV Infections, HIV-1, Humans, Immunity, Humoral
Show Abstract · Added May 3, 2017
Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines.
© 2017 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Deep sequencing and human antibody repertoire analysis.
Boyd SD, Crowe JE
(2016) Curr Opin Immunol 40: 103-9
MeSH Terms: Animals, Antibodies, B-Lymphocytes, Cell Differentiation, Cell Lineage, High-Throughput Nucleotide Sequencing, Humans, Immunity, Humoral, Immunotherapy, Receptors, Antigen, B-Cell
Show Abstract · Added April 25, 2016
In the past decade, high-throughput DNA sequencing (HTS) methods and improved approaches for isolating antigen-specific B cells and their antibody genes have been applied in many areas of human immunology. This work has greatly increased our understanding of human antibody repertoires and the specific clones responsible for protective immunity or immune-mediated pathogenesis. Although the principles underlying selection of individual B cell clones in the intact immune system are still under investigation, the combination of more powerful genetic tracking of antibody lineage development and functional testing of the encoded proteins promises to transform therapeutic antibody discovery and optimization. Here, we highlight recent advances in this fast-moving field.
Copyright © 2016. Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
10 MeSH Terms
A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity.
Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS
(2016) Immunol Lett 172: 29-39
MeSH Terms: Abscess, Animals, Bacterial Load, Disease Models, Animal, Drug Combinations, Freund's Adjuvant, Hemocyanins, Humans, Immune Evasion, Immunity, Humoral, Immunization, Immunoglobulin G, Peptide Fragments, Plant Extracts, Proteolysis, Rabbits, Recombinant Fusion Proteins, Staphylococcal Infections, Staphylococcus aureus
Show Abstract · Added April 22, 2016
Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth.
Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Reduced T cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by nonhematopoietic cells.
Kojima F, Frolov A, Matnani R, Woodward JG, Crofford LJ
(2013) J Immunol 191: 4979-88
MeSH Terms: Animals, Arthritis, Experimental, Bone Marrow Transplantation, Cells, Cultured, Collagen, Female, Immunity, Humoral, Immunoglobulin G, Immunoglobulin M, Interferon-gamma, Interleukin-17, Interleukin-2, Interleukin-4, Intramolecular Oxidoreductases, Male, Mice, Mice, Inbred DBA, Mice, Knockout, Prostaglandin-E Synthases, T-Lymphocytes
Show Abstract · Added January 21, 2015
Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that specifically catalyzes the conversion of PGH2 to PGE2. We showed that mPGES-1 null mice had a significantly reduced incidence and severity of collagen-induced arthritis compared with wild-type (WT) mice associated with a marked reduction in Abs to type II collagen. In this study, we further elucidated the role of mPGES-1 in the humoral immune response. Basal levels of serum IgM and IgG were significantly reduced in mPGES-1 null mice. Compared with WT mice, mPGES-1 null mice exhibited a significant reduction of hapten-specific serum Abs in response to immunization with the T cell-dependent (TD) Ag DNP-keyhole limpet hemocyanin. Immunization with the T cell-independent type 1 Ag trinitrophenyl-LPS or the T cell-independent type 2 Ag DNP-Ficoll revealed minimal differences between strains. Germinal center formation in the spleen of mPGES-1 null and WT mice were similar after immunization with DNP-keyhole limpet hemocyanin. To determine whether the effect of mPGES-1 and PGE2 was localized to hematopoietic or nonhematopoietic cells, we generated bone marrow chimeras. We demonstrated that mPGES-1 deficiency in nonhematopoietic cells was the critical factor for reduced TD Ab production. We conclude that mPGES-1 and PGE2-dependent phenotypic changes of nonhematopoietic/mesenchymal stromal cells play a key role in TD humoral immune responses in vivo. These findings may have relevance to the pathogenesis of rheumatoid arthritis and other autoimmune inflammatory diseases associated with autoantibody formation.
0 Communities
1 Members
0 Resources
20 MeSH Terms
B cell-intrinsic and -extrinsic regulation of antibody responses by PARP14, an intracellular (ADP-ribosyl)transferase.
Cho SH, Raybuck A, Wei M, Erickson J, Nam KT, Cox RG, Trochtenberg A, Thomas JW, Williams J, Boothby M
(2013) J Immunol 191: 3169-78
MeSH Terms: Adaptive Immunity, Animals, Antibody Formation, B-Lymphocytes, Cell Differentiation, Immunity, Humoral, Immunoglobulin A, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Poly(ADP-ribose) Polymerases, T-Lymphocytes, Helper-Inducer
Show Abstract · Added November 6, 2013
The capacity to achieve sufficient concentrations of Ag-specific Ab of the appropriate isotypes is a critical component of immunity that requires efficient differentiation and interactions of Ag-specific B and Th cells along with dendritic cells. Numerous bacterial toxins catalyze mono(ADP-ribosyl)ation of mammalian proteins to influence cell physiology and adaptive immunity. However, little is known about biological functions of intracellular mammalian mono(ADP-ribosyl)transferases, such as any ability to regulate Ab responses. poly-(ADP-ribose) polymerase 14 (PARP14), an intracellular protein highly expressed in lymphoid cells, binds to STAT6 and encodes a catalytic domain with mammalian mono(ADP-ribosyl)transferase activity. In this article, we show that recall IgA as well as the STAT6-dependent IgE Ab responses are impaired in PARP14-deficient mice. Whereas PARP14 regulation of IgE involved a B cell-intrinsic process, the predominant impact on IgA was B cell extrinsic. Of note, PARP14 deficiency reduced the levels of Th17 cells and CD103⁺ DCs, which are implicated in IgA regulation. PARP14 enhanced the expression of RORα, Runx1, and Smad3 after T cell activation, and, importantly, its catalytic activity of PARP14 promoted Th17 differentiation. Collectively, the findings show that PARP14 influences the class distribution, affinity repertoire, and recall capacity of Ab responses in mice, as well as provide direct evidence of the requirement for protein mono-ADP-ribosylation in Th cell differentiation.
1 Communities
1 Members
0 Resources
13 MeSH Terms
5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.
Secatto A, Rodrigues LC, Serezani CH, Ramos SG, Dias-Baruffi M, Faccioli LH, Medeiros AI
(2012) PLoS One 7: e31701
MeSH Terms: Animals, Arachidonate 5-Lipoxygenase, Cell Proliferation, Cells, Cultured, Cytotoxicity, Immunologic, Flow Cytometry, Histoplasma, Histoplasmosis, Immunity, Humoral, Immunity, Innate, Leukotriene B4, Leukotriene C4, Lung, Lymphocyte Activation, Macrophages, Peritoneal, Mice, Mice, Knockout, Nitric Oxide, Phagocytosis, Survival Rate, T-Lymphocytes
Show Abstract · Added May 4, 2017
5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
0 Communities
1 Members
0 Resources
21 MeSH Terms