Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 84

Publication Record

Connections

Widespread Tau-Specific CD4 T Cell Reactivity in the General Population.
Lindestam Arlehamn CS, Pham J, Alcalay RN, Frazier A, Shorr E, Carpenter C, Sidney J, Dhanwani R, Agin-Liebes J, Garretti F, Amara AW, Standaert DG, Phillips EJ, Mallal SA, Peters B, Sulzer D, Sette A
(2019) J Immunol 203: 84-92
MeSH Terms: Adult, Aged, Aged, 80 and over, Autoimmunity, CD4-Positive T-Lymphocytes, Cells, Cultured, Clonal Selection, Antigen-Mediated, Female, Humans, Immune Tolerance, Male, Middle Aged, Peptides, Phosphorylation, Protein Aggregation, Pathological, T-Cell Antigen Receptor Specificity, Young Adult, tau Proteins
Show Abstract · Added March 30, 2020
Tau protein is found to be aggregated and hyperphosphorylated (p-tau) in many neurologic disorders, including Parkinson disease (PD) and related parkinsonisms, Alzheimer disease, traumatic brain injury, and even in normal aging. Although not known to produce autoimmune responses, we hypothesized that the appearance of aggregated tau and p-tau with disease could activate the immune system. We thus compared T cell responses to tau and p-tau-derived peptides between PD patients, age-matched healthy controls, and young healthy controls (<35 y old; who are less likely to have high levels of tau aggregates). All groups exhibited CD4 T cell responses to tau-derived peptides, which were associated with secretion of IFN-γ, IL-5, and/or IL-4. The PD and control participants exhibited a similar magnitude and breadth of responses. Some tau-derived epitopes, consisting of both unmodified and p-tau residues, were more highly represented in PD participants. These results were verified in an independent set of PD and control donors (either age-matched or young controls). Thus, T cells recognizing tau epitopes escape central and peripheral tolerance in relatively high numbers, and the magnitude and nature of these responses are not modulated by age or PD disease.
Copyright © 2019 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells.
Kyburz A, Fallegger A, Zhang X, Altobelli A, Artola-Boran M, Borbet T, Urban S, Paul P, Münz C, Floess S, Huehn J, Cover TL, Blaser MJ, Taube C, Müller A
(2019) J Allergy Clin Immunol 143: 1496-1512.e11
MeSH Terms: Animals, Female, Helicobacter Infections, Immune Tolerance, Mice, Inbred C57BL, Pregnancy, Prenatal Exposure Delayed Effects, Respiratory Hypersensitivity, T-Lymphocytes, Regulatory
Show Abstract · Added February 7, 2019
BACKGROUND - Transmaternal exposure to tobacco, microbes, nutrients, and other environmental factors shapes the fetal immune system through epigenetic processes. The gastric microbe Helicobacter pylori represents an ancestral constituent of the human microbiota that causes gastric disorders on the one hand and is inversely associated with allergies and chronic inflammatory conditions on the other.
OBJECTIVE - Here we investigate the consequences of transmaternal exposure to H pylori in utero and/or during lactation for susceptibility to viral and bacterial infection, predisposition to allergic airway inflammation, and development of immune cell populations in the lungs and lymphoid organs.
METHODS - We use experimental models of house dust mite- or ovalbumin-induced airway inflammation and influenza A virus or Citrobacter rodentium infection along with metagenomics analyses, multicolor flow cytometry, and bisulfite pyrosequencing, to study the effects of H pylori on allergy severity and immunologic and microbiome correlates thereof.
RESULTS - Perinatal exposure to H pylori extract or its immunomodulator vacuolating cytotoxin confers robust protective effects against allergic airway inflammation not only in first- but also second-generation offspring but does not increase susceptibility to viral or bacterial infection. Immune correlates of allergy protection include skewing of regulatory over effector T cells, expansion of regulatory T-cell subsets expressing CXCR3 or retinoic acid-related orphan receptor γt, and demethylation of the forkhead box P3 (FOXP3) locus. The composition and diversity of the gastrointestinal microbiota is measurably affected by perinatal H pylori exposure.
CONCLUSION - We conclude that exposure to H pylori has consequences not only for the carrier but also for subsequent generations that can be exploited for interventional purposes.
Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Anti-Insulin B Cells Are Poised for Antigen Presentation in Type 1 Diabetes.
Felton JL, Maseda D, Bonami RH, Hulbert C, Thomas JW
(2018) J Immunol 201: 861-873
MeSH Terms: Animals, Antigen Presentation, Autoantibodies, Autoantigens, B-Lymphocyte Subsets, Diabetes Mellitus, Type 1, Female, Immune Tolerance, Inflammation, Insulin, Insulin Antibodies, Lymphocyte Activation, Male, Mice, Mice, Inbred NOD, Mice, Transgenic, Receptors, Antigen, B-Cell
Show Abstract · Added July 20, 2018
Early breaches in B cell tolerance are central to type 1 diabetes progression in mouse and man. Conventional BCR transgenic mouse models (VH125.Tg NOD) reveal the power of B cell specificity to drive disease as APCs. However, in conventional fixed IgM models, comprehensive assessment of B cell development is limited. To provide more accurate insight into the developmental and functional fates of anti-insulin B cells, we generated a new NOD model (V125NOD) in which anti-insulin VDJH125 is targeted to the IgH chain locus to generate a small (1-2%) population of class switch-competent insulin-binding B cells. Tracking of this rare population in a polyclonal repertoire reveals that anti-insulin B cells are preferentially skewed into marginal zone and late transitional subsets known to have increased sensitivity to proinflammatory signals. Additionally, IL-10 production, characteristic of regulatory B cell subsets, is increased. In contrast to conventional models, class switch-competent anti-insulin B cells proliferate normally in response to mitogenic stimuli but remain functionally silent for insulin autoantibody production. Diabetes development is accelerated, which demonstrates the power of anti-insulin B cells to exacerbate disease without differentiation into Ab-forming or plasma cells. Autoreactive T cell responses in V125NOD mice are not restricted to insulin autoantigens, as evidenced by increased IFN-γ production to a broad array of diabetes-associated epitopes. Together, these results independently validate the pathogenic role of anti-insulin B cells in type 1 diabetes, underscore their diverse developmental fates, and demonstrate the pathologic potential of coupling a critical β cell specificity to predominantly proinflammatory Ag-presenting B cell subsets.
Copyright © 2018 by The American Association of Immunologists, Inc.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Host Expression of the CD8 Treg/NK Cell Restriction Element Qa-1 is Dispensable for Transplant Tolerance.
Stocks BT, Wilson CS, Marshall AF, Brewer LA, Moore DJ
(2017) Sci Rep 7: 11181
MeSH Terms: Animals, B-Lymphocytes, CD4-Positive T-Lymphocytes, Histocompatibility Antigens Class I, Immune Tolerance, Killer Cells, Natural, Mice, Inbred C57BL, Mice, Knockout, T-Lymphocytes, Regulatory, Transplantation
Show Abstract · Added September 13, 2017
Disruption of the non-classical Major Histocompatibility Complex (MHC) Ib molecule Qa-1 impairs CD8 Treg and natural killer (NK) cell function and promotes a lupus-like autoimmune disease. This immune perturbation would be expected to enhance anti-transplant responses and impair tolerance induction, but the effect of Qa-1 deficiency on the transplant response has not been previously reported. Qa-1 deficiency enhanced CD4 TFH and germinal center (GC) B cell numbers in naïve mice and hastened islet allograft rejection. Despite enhanced immunity in B6.Qa-1 mice, these mice did not generate an excessive primary CD4 TFH cell response nor an enhanced alloantibody reaction. Both CD8 Tregs and NK cells, which often regulate other cells through host Qa-1 expression, were targets of anti-CD45RB therapy that had not been previously recognized. However, B6.Qa-1 mice remained susceptible to anti-CD45RB mediated suppression of the alloantibody response and transplant tolerance induction to mismatched islet allografts. Overall, despite enhanced immunity as demonstrated by augmented CD4 TFH/GC B cell numbers and hastened islet allograft rejection in naïve 12-week old Qa-1 deficient mice, the CD8 Treg/NK cell restriction element Qa-1 does not regulate the primary cellular or humoral alloresponse and is not required for long-term transplant tolerance.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Potentiation and tolerance of toll-like receptor priming in human endothelial cells.
Koch SR, Lamb FS, Hellman J, Sherwood ER, Stark RJ
(2017) Transl Res 180: 53-67.e4
MeSH Terms: Endothelial Cells, Extracellular Signal-Regulated MAP Kinases, Human Umbilical Vein Endothelial Cells, Humans, Immune Tolerance, Interferon Regulatory Factor-7, Interferons, Interleukin-6, Lipopeptides, Lipopolysaccharides, Nuclear Pore Complex Proteins, Phosphorylation, Poly I-C, RNA-Binding Proteins, Toll-Like Receptors, Up-Regulation
Show Abstract · Added August 28, 2016
Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Peripheral tolerance can be modified by altering KLF2-regulated Treg migration.
Pabbisetty SK, Rabacal W, Volanakis EJ, Parekh VV, Olivares-Villagómez D, Cendron D, Boyd KL, Van Kaer L, Sebzda E
(2016) Proc Natl Acad Sci U S A 113: E4662-70
MeSH Terms: Animals, Autoimmunity, Cell Movement, Immune Tolerance, Kruppel-Like Transcription Factors, Lymphoid Tissue, Mice, Receptors, Lymphocyte Homing, T-Lymphocytes, Regulatory
Show Abstract · Added July 30, 2016
Tregs are essential for maintaining peripheral tolerance, and thus targeting these cells may aid in the treatment of autoimmunity and cancer by enhancing or reducing suppressive functions, respectively. Before these cells can be harnessed for therapeutic purposes, it is necessary to understand how they maintain tolerance under physiologically relevant conditions. We now report that transcription factor Kruppel-like factor 2 (KLF2) controls naive Treg migration patterns via regulation of homeostatic and inflammatory homing receptors, and that in its absence KLF2-deficient Tregs are unable to migrate efficiently to secondary lymphoid organs (SLOs). Diminished Treg trafficking to SLOs is sufficient to initiate autoimmunity, indicating that SLOs are a primary site for maintaining peripheral tolerance under homeostatic conditions. Disease severity correlates with impaired Treg recruitment to SLOs and, conversely, promotion of Tregs into these tissues can ameliorate autoimmunity. Moreover, stabilizing KLF2 expression within the Treg compartment enhances peripheral tolerance by diverting these suppressive cells from tertiary tissues into SLOs. Taken together, these results demonstrate that peripheral tolerance is enhanced or diminished through modulation of Treg trafficking to SLOs, a process that can be controlled by adjusting KLF2 protein levels.
0 Communities
1 Members
0 Resources
9 MeSH Terms
The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis.
Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, Ganguly S, Fu J, Pardoll DM, Sears CL, Housseau F
(2017) Mucosal Immunol 10: 421-433
MeSH Terms: Animals, Arginase, Bacterial Toxins, Bacteroides Infections, Bacteroides fragilis, Carcinogenesis, Cell Differentiation, Cell Proliferation, Cells, Cultured, Colon, Colorectal Neoplasms, Disease Models, Animal, Epithelial Cells, Genes, APC, Humans, Immune Tolerance, Interleukin-17, Metalloendopeptidases, Mice, Mice, Inbred C57BL, Mice, Mutant Strains, Myeloid-Derived Suppressor Cells, Nitric Oxide Synthase Type II, T-Lymphocytes, Transcriptome
Show Abstract · Added March 20, 2018
Enterotoxigenic Bacteroides fragilis (ETBF), a human commensal and candidate pathogen in colorectal cancer (CRC), is a potent initiator of interleukin-17 (IL-17)-dependent colon tumorigenesis in Min mice. We examined the role of IL-17 and ETBF on the differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages, which are known to promote tumorigenesis. The myeloid compartment associated with ETBF-induced colon tumorigenesis in Min mice was defined using flow cytometry and gene expression profiling. Cell-sorted immature myeloid cells were functionally assayed for inhibition of T-cell proliferation and inducible nitric oxide synthase expression to delineate MDSC populations. A comparison of ETBF infection with that of other oncogenic bacteria (Fusobacterium nucleatum or pksEscherichia coli) revealed a specific, ETBF-associated colonic immune infiltrate. ETBF-triggered colon tumorigenesis is associated with an IL-17-driven myeloid signature characterized by subversion of steady-state myelopoiesis in favor of the generation of protumoral monocytic-MDSCs (MO-MDSCs). Combined action of the B. fragilis enterotoxin BFT and IL-17 on colonic epithelial cells promoted the differentiation of MO-MDSCs, which selectively upregulated Arg1 and Nos2, produced NO, and suppressed T-cell proliferation. Evidence of a pathogenic inflammatory signature in humans colonized with ETBF may allow for the identification of populations at risk for developing colon cancer.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion.
Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N, Elso CM, DeNicola M, Bottino R, Powers AC, Harlan DM, Kent SC, Mannering SI, Haskins K
(2016) Science 351: 711-4
MeSH Terms: Amino Acid Sequence, Animals, C-Peptide, CD4-Positive T-Lymphocytes, Clone Cells, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Epitopes, Immune Tolerance, Insulin-Secreting Cells, Mice, Mice, Inbred NOD, Molecular Sequence Data, Peptides
Show Abstract · Added July 16, 2016
T cell-mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.
Copyright © 2016, American Association for the Advancement of Science.
1 Communities
2 Members
0 Resources
14 MeSH Terms
The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy.
Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL
(2016) Expert Rev Clin Immunol 12: 763-73
MeSH Terms: Agammaglobulinaemia Tyrosine Kinase, Animals, Anti-Inflammatory Agents, Autoantibodies, Autoimmune Diseases, Autoimmunity, B-Lymphocytes, Humans, Immune Tolerance, Lymphocyte Activation, Protein-Tyrosine Kinases, Receptors, Antigen, B-Cell, Signal Transduction
Show Abstract · Added July 18, 2017
Bruton's tyrosine kinase (BTK) mediates B cell signaling and is also present in innate immune cells but not T cells. BTK propagates B cell receptor (BCR) responses to antigen-engagement as well as to stimulation via CD40, toll-like receptors (TLRs), Fc receptors (FCRs) and chemokine receptors. Importantly, BTK can modulate signaling, acting as a "rheostat" rather than an "on-off" switch; thus, overexpression leads to autoimmunity while decreased levels improve autoimmune disease outcomes. Autoreactive B cells depend upon BTK for survival to a greater degree than normal B cells, reflected as loss of autoantibodies with maintenance of total antibody levels when BTK is absent. This review describes contributions of BTK to immune tolerance, including studies testing BTK-inhibitors for treatment of autoimmune diseases.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Early Th1 immunity promotes immune tolerance and may impair graft-versus-leukemia effect after allogeneic hematopoietic cell transplantation.
Engelhardt BG, Paczesny S, Jung DK, Daguindau E, Jagasia M, Savani BN, Chinratanalab W, Cornell RF, Goodman S, Greer JP, Kassim AA, Sengsayadeth S, Yoder SM, Rock MT, Crowe JE
(2016) Haematologica 101: e204-8
MeSH Terms: Adult, Aged, Allografts, Female, Graft vs Leukemia Effect, Hematopoietic Stem Cell Transplantation, Humans, Immune Tolerance, Immunity, Cellular, Leukemia, Male, Middle Aged, Th1 Cells
Added February 4, 2016
0 Communities
2 Members
0 Resources
13 MeSH Terms