Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 406

Publication Record

Connections

Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis.
McHugo M, Talati P, Woodward ND, Armstrong K, Blackford JU, Heckers S
(2018) Neuroimage Clin 20: 1106-1114
MeSH Terms: Adult, Aged, Bipolar Disorder, Dentate Gyrus, Early Diagnosis, Female, Hippocampus, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Psychotic Disorders
Show Abstract · Added March 26, 2019
Previous studies in psychosis patients have shown hippocampal volume deficits across anterior and posterior regions or across subfields, but subfield specific changes in volume along the hippocampal long axis have not been examined. Here, we tested the hypothesis that volume changes exist across the hippocampus in chronic psychosis but only the anterior CA region is affected in early psychosis patients. We analyzed structural MRI data from 179 patients with a non-affective psychotic disorder (94 chronic psychosis; 85 early psychosis) and 167 heathy individuals demographically matched to the chronic and early psychosis samples respectively (82 matched to chronic patients; 85 matched to early patients). We measured hippocampal volumes using Freesurfer 6-derived automated segmentation of both anterior and posterior regions and the CA, dentate gyrus, and subiculum subfields. We found a hippocampal volume deficit in both anterior and posterior regions in chronic psychosis, but this deficit was limited to the anterior hippocampus in early psychosis patients. This volume change was more pronounced in the anterior CA subfield of early psychosis patients than in the dentate gyrus or subiculum. Our findings support existing models of psychosis implicating initial CA dysfunction with later progression to other hippocampal regions and suggest that the anterior hippocampus may be an important target for early interventions.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Limits to anatomical accuracy of diffusion tractography using modern approaches.
Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y, Neher P, Aydogan DB, Shi Y, Ocampo-Pineda M, Schiavi S, Daducci A, Girard G, Barakovic M, Rafael-Patino J, Romascano D, Rensonnet G, Pizzolato M, Bates A, Fischi E, Thiran JP, Canales-Rodríguez EJ, Huang C, Zhu H, Zhong L, Cabeen R, Toga AW, Rheault F, Theaud G, Houde JC, Sidhu J, Chamberland M, Westin CF, Dyrby TB, Verma R, Rathi Y, Irfanoglu MO, Thomas C, Pierpaoli C, Descoteaux M, Anderson AW, Landman BA
(2019) Neuroimage 185: 1-11
MeSH Terms: Brain, Brain Mapping, Diffusion Tensor Imaging, Humans, Image Processing, Computer-Assisted, Neural Pathways
Show Abstract · Added March 26, 2019
Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Anatomical accuracy of standard-practice tractography algorithms in the motor system - A histological validation in the squirrel monkey brain.
Schilling KG, Gao Y, Stepniewska I, Janve V, Landman BA, Anderson AW
(2019) Magn Reson Imaging 55: 7-25
MeSH Terms: Algorithms, Animals, Brain, Brain Mapping, Diffusion Tensor Imaging, Image Processing, Computer-Assisted, Models, Anatomic, Motor Cortex, Probability, Reproducibility of Results, Saimiri, Sensitivity and Specificity, Software, White Matter
Show Abstract · Added March 26, 2019
For two decades diffusion fiber tractography has been used to probe both the spatial extent of white matter pathways and the region to region connectivity of the brain. In both cases, anatomical accuracy of tractography is critical for sound scientific conclusions. Here we assess and validate the algorithms and tractography implementations that have been most widely used - often because of ease of use, algorithm simplicity, or availability offered in open source software. Comparing forty tractography results to a ground truth defined by histological tracers in the primary motor cortex on the same squirrel monkey brains, we assess tract fidelity on the scale of voxels as well as over larger spatial domains or regional connectivity. No algorithms are successful in all metrics, and, in fact, some implementations fail to reconstruct large portions of pathways or identify major points of connectivity. The accuracy is most dependent on reconstruction method and tracking algorithm, as well as the seed region and how this region is utilized. We also note a tremendous variability in the results, even though the same MR images act as inputs to all algorithms. In addition, anatomical accuracy is significantly decreased at increased distances from the seed. An analysis of the spatial errors in tractography reveals that many techniques have trouble properly leaving the gray matter, and many only reveal connectivity to adjacent regions of interest. These results show that the most commonly implemented algorithms have several shortcomings and limitations, and choices in implementations lead to very different results. This study should provide guidance for algorithm choices based on study requirements for sensitivity, specificity, or the need to identify particular connections, and should serve as a heuristic for future developments in tractography.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Impact of substance use disorder on gray matter volume in schizophrenia.
Quinn M, McHugo M, Armstrong K, Woodward N, Blackford J, Heckers S
(2018) Psychiatry Res Neuroimaging 280: 9-14
MeSH Terms: Adolescent, Adult, Amygdala, Cerebral Cortex, Diagnosis, Dual (Psychiatry), Female, Frontal Lobe, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Occipital Lobe, Organ Size, Schizophrenia, Schizophrenic Psychology, Substance-Related Disorders, Young Adult
Show Abstract · Added March 26, 2019
Substance use may confound the study of brain structure in schizophrenia. We used voxel-based morphometry (VBM) to examine whether differences in regional gray matter volumes exist between schizophrenia patients with (n = 92) and without (n = 66) clinically significant cannabis and/or alcohol use histories compared to 88 healthy control subjects. Relative to controls, patients with schizophrenia had reduced gray matter volume in the bilateral precentral gyrus, right medial frontal cortex, right visual cortex, right occipital pole, right thalamus, bilateral amygdala, and bilateral cerebellum regardless of substance use history. Within these regions, we found no volume differences between patients with schizophrenia and a history of cannabis and/or alcohol compared to patients with schizophrenia without a clinically significant substance use history. Our data support the idea that a clinically meaningful history of alcohol or cannabis use does not significantly compound the gray matter deficits associated with schizophrenia.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Relating structural and functional brainstem connectivity to disease measures in epilepsy.
Englot DJ, Gonzalez HFJ, Reynolds BB, Konrad PE, Jacobs ML, Gore JC, Landman BA, Morgan VL
(2018) Neurology 91: e67-e77
MeSH Terms: Adult, Brain Stem, Case-Control Studies, Cognition Disorders, Epilepsy, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Nerve Net, Neuropsychological Tests, Oxygen, Retrospective Studies
Show Abstract · Added September 25, 2018
OBJECTIVE - While epilepsy studies rarely examine brainstem, we sought to examine the hypothesis that temporal lobe epilepsy (TLE) leads to subcortical arousal center dysfunction, contributing to neocortical connectivity and neurocognitive disturbances.
METHODS - In this case-control study of 26 adult patients with TLE and 26 controls, we used MRI to measure structural and functional connectivity of the cuneiform/subcuneiform nuclei (CSC), pedunculopontine nucleus, and ventral tegmental area. Ascending reticular activating system connectivity patterns were related to neuropsychological and disease measures.
RESULTS - Compared to controls, patients with TLE demonstrated reductions in ascending reticular activating system structural and functional connectivity, most prominently to neocortical regions ( < 0.05, unpaired tests, corrected). While reduced CSC structural connectivity was related to impaired performance IQ and visuospatial memory, diminished CSC functional connectivity was associated with impaired verbal IQ and language abilities ( < 0.05, Spearman ρ, tests). Finally, CSC structural connectivity decreases were quantitatively associated with consciousness-impairing seizure frequency ( < 0.05, Spearman ρ) and the presence of generalized seizures ( < 0.05, unpaired test), suggesting a relationship to disease severity.
CONCLUSIONS - Connectivity perturbations in brainstem arousal centers are present in TLE and may contribute to neurocognitive problems. These studies demonstrate the underappreciated role of brainstem networks in epilepsy and may lead to novel neuromodulation targets to treat or prevent deleterious brain network effects of seizures in TLE.
© 2018 American Academy of Neurology.
0 Communities
3 Members
0 Resources
15 MeSH Terms
Use of the thyroid imaging, reporting, and data system (TI-RADS) scoring system for the evaluation of subcentimeter thyroid nodules.
Weiss VL, Andreotti RF, Ely KA
(2018) Cancer Cytopathol 126: 518-524
MeSH Terms: Adult, Aged, Aged, 80 and over, Biopsy, Fine-Needle, Data Systems, Female, Follow-Up Studies, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Practice Guidelines as Topic, Prognosis, Retrospective Studies, Societies, Medical, Thyroid Gland, Thyroid Neoplasms, Thyroid Nodule, Ultrasonography, Young Adult
Show Abstract · Added April 15, 2019
BACKGROUND - The American Thyroid Association (ATA) recommends fine-needle aspiration (FNA) biopsy of nodules measuring >1.5 cm with low-suspicion sonographic patterns or >1.0 cm with high/intermediate-suspicion features. Routine biopsy of nodules <1 cm is not recommended. However, despite these recommendations, subcentimeter nodules are often referred for FNA biopsy.
METHODS - This was a retrospective chart review of consecutive thyroid FNAs during an 18-month period (1157 patients, 1491 nodules, 2016-2017) to evaluate age, sex, medical history, diagnoses, and follow-up. Radiographic information was used to identify 61 subcentimeter nodules (4%) from 57 patients. Ultrasound studies were re-evaluated using criteria according to the American College of Radiology Thyroid Imaging, Reporting, and Data System (TI-RADS).
RESULTS - Reported reasons for biopsy included a larger companion nodule (44%), a personal or family history of cancer (26%), or a suspicious sonogram, including calcification and/or irregular contours (16%). FNA diagnoses included: 69% benign (42 of 61 nodules), 10% papillary thyroid carcinoma (PTC) (6 of 61 nodules), and 15% atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) (9 of 61 nodules). Seven percent of nodules were unsatisfactory/nondiagnostic (4 of 61 nodules) compared with a 3% nondiagnostic rate for all sized nodules. Fifty-one nodules had an ultrasound available for re-review using the TI-RADS scoring system. A high TI-RADS score (4-5) was indicative of PTC in 29.4% of nodules. A low TI-RADS score (1-2) was indicative of PTC in 0% of nodules (P < .01). High and intermediate TI-RADS scores (3 and 4-5, respectively) were indicative of PTC/AUS/FLUS in 32% of nodules compared with 0% in those with low TI-RADS scores (P < .01).
CONCLUSIONS - The current results demonstrate successful use of the TI-RADS scoring system in evaluation of the risk of malignancy in subcentimeter nodules. Larger studies will be necessary to determine whether biopsy is warranted for TI-RADS high-subcentimeter nodules. Cancer Cytopathol 2018. © 2018 American Cancer Society.
© 2018 American Cancer Society.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia.
Henry ML, Hubbard HI, Grasso SM, Mandelli ML, Wilson SM, Sathishkumar MT, Fridriksson J, Daigle W, Boxer AL, Miller BL, Gorno-Tempini ML
(2018) Brain 141: 1799-1814
MeSH Terms: Aged, Aphasia, Primary Progressive, Aphasia, Wernicke, Female, Follow-Up Studies, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Neuropsychological Tests, Speech, Speech Therapy, Treatment Outcome
Show Abstract · Added March 26, 2019
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) presents with a gradual decline in grammar and motor speech resulting from selective degeneration of speech-language regions in the brain. There has been considerable progress in identifying treatment approaches to remediate language deficits in other primary progressive aphasia variants; however, interventions for the core deficits in nfvPPA have yet to be systematically investigated. Further, the neural mechanisms that support behavioural restitution in the context of neurodegeneration are not well understood. We examined the immediate and long-term benefits of video implemented script training for aphasia (VISTA) in 10 individuals with nfvPPA. The treatment approach involved repeated rehearsal of individualized scripts via structured treatment with a clinician as well as intensive home practice with an audiovisual model using 'speech entrainment'. We evaluated accuracy of script production as well as overall intelligibility and grammaticality for trained and untrained scripts. These measures and standardized test scores were collected at post-treatment and 3-, 6-, and 12-month follow-up visits. Treatment resulted in significant improvement in production of correct, intelligible scripted words for trained topics, a reduction in grammatical errors for trained topics, and an overall increase in intelligibility for trained as well as untrained topics at post-treatment. Follow-up testing revealed maintenance of gains for trained scripts up to 1 year post-treatment on the primary outcome measure. Performance on untrained scripts and standardized tests remained relatively stable during the follow-up period, indicating that treatment helped to stabilize speech and language despite disease progression. To identify neural predictors of responsiveness to intervention, we examined treatment effect sizes relative to grey matter volumes in regions of interest derived from a previously identified speech production network. Regions of significant atrophy within this network included bilateral inferior frontal cortices and supplementary motor area as well as left striatum. Volumes in a left middle/inferior temporal region of interest were significantly correlated with the magnitude of treatment effects. This region, which was relatively spared anatomically in nfvPPA patients, has been implicated in syntactic production as well as visuo-motor facilitation of speech. This is the first group study to document the benefits of behavioural intervention that targets both linguistic and motoric deficits in nfvPPA. Findings indicate that behavioural intervention may result in lasting and generalized improvement of communicative function in individuals with neurodegenerative disease and that the integrity of spared regions within the speech-language network may be an important predictor of treatment response.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.
Conrad BN, Barry RL, Rogers BP, Maki S, Mishra A, Thukral S, Sriram S, Bhatia A, Pawate S, Gore JC, Smith SA
(2018) Brain 141: 1650-1664
MeSH Terms: Adult, Correlation of Data, Disability Evaluation, Female, Functional Laterality, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Multiple Sclerosis, Nerve Net, Oxygen, Spinal Cord, Young Adult
Show Abstract · Added March 26, 2019
Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect was also observed in controls whereby females demonstrated higher ventral network connectivity. Wilcoxon rank-sum tests detected no differences in average connectivity or power of low frequency fluctuations in patients compared to controls. The presence of lesions was, however, associated with local alterations in connectivity with differential effects depending on columnar location. The patient results suggest that spinal cord functional networks are generally intact in relapsing-remitting multiple sclerosis but that lesions are associated with focal abnormalities in intrinsic connectivity. These findings are discussed in light of the current literature on spinal cord functional MRI and the potential neurological underpinnings.
0 Communities
1 Members
0 Resources
16 MeSH Terms
High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts.
Ross DA, Tamber-Rosenau BJ, Palmeri TJ, Zhang J, Xu Y, Gauthier I
(2018) J Cogn Neurosci 30: 973-984
MeSH Terms: Adult, Automobiles, Brain Mapping, Discrimination (Psychology), Functional Laterality, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Oxygen, Pattern Recognition, Visual, Photic Stimulation, Professional Competence, Psychomotor Performance, Temporal Lobe, Young Adult
Show Abstract · Added April 3, 2018
Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.
0 Communities
1 Members
0 Resources
16 MeSH Terms
In vitro feasibility of next generation non-linear beamforming ultrasound methods to characterize and size kidney stones.
Tierney JE, Schlunk SG, Jones R, George M, Karve P, Duddu R, Byram BC, Hsi RS
(2019) Urolithiasis 47: 181-188
MeSH Terms: Algorithms, Feasibility Studies, Humans, Image Processing, Computer-Assisted, Kidney, Kidney Calculi, Sensitivity and Specificity, Ultrasonography
Show Abstract · Added April 3, 2018
Ultrasound imaging for kidney stones suffers from poorer sensitivity, diminished specificity, and overestimation of stone size compared to computed tomography (CT). The purpose of this study was to demonstrate in vitro feasibility of novel ultrasound imaging methods comparing traditional B-mode to advanced beamforming techniques including plane wave synthetic focusing (PWSF), short-lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with incoherent compounding, and aperture domain model image reconstruction (ADMIRE). The ultrasound techniques were evaluated using a research-based ultrasound system applied to an in vitro kidney stone model at 4 and 8 cm depths. Stone diameter sizing and stone contrast were compared among the different techniques. Analysis of variance was used to analyze the differences among group means, with p < 0.05 considered significant, and a Student's t test was used to compare each method with B-mode, with p < 0.0025 considered significant. All stones were detectable with each method. MLSC performed best with stone sizing and stone contrast compared to B-mode. On average, B-mode sizing error ± SD was > 1 mm (1.2 ± 1.1 mm), while those for PWSF, ADMIRE, and MLSC were < 1 mm (- 0.3 ± 2.9 mm, 0.6 ± 0.8, 0.8 ± 0.8, respectively). Subjectively, MLSC appeared to suppress the entire background thus highlighting only the stone. The ADMIRE and SLSC techniques appeared to highlight the stone shadow relative to the background. The detection and sizing of stones in vitro are feasible with advanced beamforming methods with ultrasound. Future work will include imaging stones at greater depths and evaluating the performance of these methods in human stone formers.
0 Communities
2 Members
0 Resources
8 MeSH Terms