Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 99

Publication Record

Connections

The 2019 Nobel Prize honors fundamental discoveries in hypoxia response.
Moslehi J, Rathmell WK
(2020) J Clin Invest 130: 4-6
MeSH Terms: Cell Hypoxia, History, 20th Century, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Nobel Prize, Vascular Endothelial Growth Factor A, Von Hippel-Lindau Tumor Suppressor Protein
Added November 27, 2019
0 Communities
2 Members
0 Resources
7 MeSH Terms
Hypoxia-inducible factors in CD4 T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity.
Cho SH, Raybuck AL, Blagih J, Kemboi E, Haase VH, Jones RG, Boothby MR
(2019) Proc Natl Acad Sci U S A 116: 8975-8984
MeSH Terms: Animals, Antibody Formation, B-Lymphocytes, Basic Helix-Loop-Helix Transcription Factors, CD4-Positive T-Lymphocytes, Cell Hypoxia, Cytokines, Germinal Center, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Immunity, Humoral, Immunization, Lymphocyte Activation, Mice, Mice, Inbred C57BL, Mice, Transgenic, Receptors, CXCR5, Sheep, T-Lymphocytes, Helper-Inducer
Show Abstract · Added April 23, 2019
T cell help in humoral immunity includes interactions of B cells with activated extrafollicular CD4 and follicular T helper (Tfh) cells. Each can promote antibody responses but Tfh cells play critical roles during germinal center (GC) reactions. After restimulation of their antigen receptor (TCR) by B cells, helper T cells act on B cells via CD40 ligand and secreted cytokines that guide Ig class switching. Hypoxia is a normal feature of GC, raising questions about molecular mechanisms governing the relationship between hypoxia response mechanisms and T cell help to antibody responses. Hypoxia-inducible factors (HIF) are prominent among mechanisms that mediate cellular responses to limited oxygen but also are induced by lymphocyte activation. We now show that loss of HIF-1α or of both HIF-1α and HIF-2α in CD4 T cells compromised essential functions in help during antibody responses. HIF-1α depletion from CD4 T cells reduced frequencies of antigen-specific GC B cells, Tfh cells, and overall antigen-specific Ab after immunization with sheep red blood cells. Compound deficiency of HIF-1α and HIF-2α led to humoral defects after hapten-carrier immunization. Further, HIF promoted CD40L expression while restraining the FoxP3-positive CD4 cells in the CXCR5 follicular regulatory population. Glycolysis increases T helper cytokine expression, and HIF promoted glycolysis in T helper cells via TCR or cytokine stimulation, as well as their production of cytokines that direct antibody class switching. Indeed, IFN-γ elaboration by HIF-deficient in vivo-generated Tfh cells was impaired. Collectively, the results indicate that HIF transcription factors are vital components of the mechanisms of help during humoral responses.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Hypoxia and Bone Metastatic Disease.
Johnson RW, Sowder ME, Giaccia AJ
(2017) Curr Osteoporos Rep 15: 231-238
MeSH Terms: Bone Marrow, Bone Neoplasms, Bone and Bones, Breast Neoplasms, Female, Humans, Hypoxia, Hypoxia-Inducible Factor 1, Neoplasm Metastasis, Signal Transduction
Show Abstract · Added March 26, 2019
PURPOSE OF REVIEW - This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow.
RECENT FINDINGS - The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain. We have compiled evidence from multiple groups that suggests that hypoxia or hypoxia inducible factor (HIF) signaling may induce spontaneous metastasis to the bone and promote tumor colonization of bone, particularly in the case of breast cancer dissemination to the bone marrow. We are beginning to understand oxygenation patterns within the bone compartment and the role for hypoxia and HIF signaling in tumor cell dissemination to the bone marrow, but further studies are warranted.
0 Communities
1 Members
0 Resources
MeSH Terms
Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies.
Haase VH
(2017) Exp Cell Res 356: 160-165
MeSH Terms: Anemia, Animals, Erythropoiesis, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Oxygen
Show Abstract · Added May 10, 2017
The oxygen-sensitive hypoxia-inducible factor (HIF) pathway plays a central role in the control of erythropoiesis and iron metabolism. The discovery of prolyl hydroxylase domain (PHD) proteins as key regulators of HIF activity has led to the development of inhibitory compounds that are now in phase 3 clinical development for the treatment of renal anemia, a condition that is commonly found in patients with advanced chronic kidney disease. This review provides a concise overview of clinical effects associated with pharmacologic PHD inhibition and was written in memory of Professor Lorenz Poellinger.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Hypoxia and Reactive Oxygen Species Homeostasis in Mesenchymal Progenitor Cells Define a Molecular Mechanism for Fracture Nonunion.
Muinos-López E, Ripalda-Cemboráin P, López-Martínez T, González-Gil AB, Lamo-Espinosa JM, Valentí A, Mortlock DP, Valentí JR, Prósper F, Granero-Moltó F
(2016) Stem Cells 34: 2342-53
MeSH Terms: Animals, Bone Morphogenetic Protein 2, Cell Hypoxia, Cell Separation, Disulfides, Fracture Healing, Fractures, Ununited, Homeostasis, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Imidazoles, Male, Mesenchymal Stem Cells, Mice, Inbred C57BL, Osteogenesis, Oxidative Stress, Periosteum, Reactive Oxygen Species
Show Abstract · Added February 3, 2017
Fracture nonunion is a major complication of bone fracture regeneration and repair. The molecular mechanisms that result in fracture nonunion appearance are not fully determined. We hypothesized that fracture nonunion results from the failure of hypoxia and hematoma, the primary signals in response to bone injury, to trigger Bmp2 expression by mesenchymal progenitor cells (MSCs). Using a model of nonstabilized fracture healing in transgenic 5'Bmp2BAC mice we determined that Bmp2 expression appears in close association with hypoxic tissue and hematoma during the early phases of fracture healing. In addition, BMP2 expression is induced when human periosteum explants are exposed to hypoxia ex vivo. Transient interference of hypoxia signaling in vivo with PX-12, a thioredoxin inhibitor, results in reduced Bmp2 expression, impaired fracture callus formation and atrophic-like nonunion by a HIF-1α independent mechanism. In isolated human periosteum-derived MSCs, BMP2 expression could be induced with the addition of platelets concentrate lysate but not with hypoxia treatment, confirming HIF-1α-independent BMP2 expression. Interestingly, in isolated human periosteum-derived mesenchymal progenitor cells, inhibition of BMP2 expression by PX-12 is accomplished only under hypoxic conditions seemingly through dis-regulation of reactive oxygen species (ROS) levels. In conclusion, we provide evidence of a molecular mechanism of hypoxia-dependent BMP2 expression in MSCs where interference with ROS homeostasis specifies fracture nonunion-like appearance in vivo through inhibition of Bmp2 expression. Stem Cells 2016;34:2342-2353.
© 2016 AlphaMed Press.
1 Communities
0 Members
0 Resources
18 MeSH Terms
The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.
Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, Shay S, French JL, West J, Haase VH
(2016) Mol Cell Biol 36: 1584-94
MeSH Terms: Animals, Arterial Pressure, Cell Hypoxia, Disease Models, Animal, Hypertension, Pulmonary, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Mice, Mutation, Pulmonary Artery, Signal Transduction, Transcription Factors
Show Abstract · Added March 16, 2016
Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension.
Bryant AJ, Carrick RP, McConaha ME, Jones BR, Shay SD, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, Tanjore H, Hemnes AR, Karwandyar AK, Polosukhin VV, Talati MA, Dong HJ, Gleaves LA, Carrier EJ, Gaskill C, Scott EW, Majka SM, Fessel JP, Haase VH, West JD, Blackwell TS, Lawson WE
(2016) Am J Physiol Lung Cell Mol Physiol 310: L249-62
MeSH Terms: Animals, Cell Proliferation, Cells, Cultured, Endothelial Cells, Endothelium, Vascular, Fibrosis, Hypertension, Pulmonary, Hypoxia, Hypoxia-Inducible Factor 1, Mice, Transgenic, Muscle, Smooth, Vascular, Pulmonary Artery, Vascular Remodeling
Show Abstract · Added February 16, 2016
Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.
1 Communities
5 Members
0 Resources
13 MeSH Terms
Molecular mechanisms of ischemic preconditioning in the kidney.
Kapitsinou PP, Haase VH
(2015) Am J Physiol Renal Physiol 309: F821-34
MeSH Terms: Acute Kidney Injury, Animals, Humans, Hypoxia, Hypoxia-Inducible Factor 1, Ischemic Preconditioning, Kidney, Oxidative Stress
Show Abstract · Added August 28, 2015
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Inflammation and hypoxia in the kidney: friends or foes?
Haase VH
(2015) Kidney Int 88: 213-5
MeSH Terms: Animals, CCAAT-Enhancer-Binding Protein-delta, Gene Expression Regulation, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Kidney, Male, Nephritis
Show Abstract · Added August 1, 2015
Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Anaemia in kidney disease: harnessing hypoxia responses for therapy.
Koury MJ, Haase VH
(2015) Nat Rev Nephrol 11: 394-410
MeSH Terms: Anemia, Basic Helix-Loop-Helix Transcription Factors, Cell Hypoxia, Erythropoiesis, Humans, Hypoxia-Inducible Factor 1, Renal Insufficiency, Chronic, Signal Transduction
Show Abstract · Added June 10, 2015
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
0 Communities
1 Members
0 Resources
8 MeSH Terms