Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 162

Publication Record

Connections

Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo.
McClatchey PM, Williams IM, Xu Z, Mignemi NA, Hughey CC, McGuinness OP, Beckman JA, Wasserman DH
(2019) Am J Physiol Endocrinol Metab 317: E1022-E1036
MeSH Terms: 4-Chloro-7-nitrobenzofurazan, Animals, Blood Flow Velocity, Carbon Radioisotopes, Deoxyglucose, Dextrans, Glucose, Hypoglycemic Agents, Insulin, Intravital Microscopy, Mice, Microcirculation, Microspheres, Muscle, Skeletal, Ultrasonography
Show Abstract · Added March 30, 2020
These studies test, using intravital microscopy (IVM), the hypotheses that perfusion effects on insulin-stimulated muscle glucose uptake (MGU) are ) capillary recruitment independent and ) mediated through the dispersion of glucose rather than insulin. For , capillary perfusion was visualized before and after intravenous insulin. No capillary recruitment was observed. For , mice were treated with vasoactive compounds (sodium nitroprusside, hyaluronidase, and lipopolysaccharide), and dispersion of fluorophores approximating insulin size (10-kDa dextran) and glucose (2-NBDG) was measured using IVM. Subsequently, insulin and 2[C]deoxyglucose were injected and muscle phospho-2[C]deoxyglucose (2[C]DG) accumulation was used as an index of MGU. Flow velocity and 2-NBDG dispersion, but not perfused surface area or 10-kDa dextran dispersion, predicted phospho-2[C]DG accumulation. For , microspheres of the same size and number as are used for contrast-enhanced ultrasound (CEU) studies of capillary recruitment were visualized using IVM. Due to their low concentration, microspheres were present in only a small fraction of blood-perfused capillaries. Microsphere-perfused blood volume correlated to flow velocity. These findings suggest that ) flow velocity rather than capillary recruitment controls microvascular contributions to MGU, ) glucose dispersion is more predictive of MGU than dispersion of insulin-sized molecules, and ) CEU measures regional flow velocity rather than capillary recruitment.
0 Communities
1 Members
0 Resources
15 MeSH Terms
β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion.
Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, Chen W, Gurevich VV, Wess J
(2019) J Clin Invest 129: 3732-3737
MeSH Terms: Animals, Genotype, Glyburide, Guanine Nucleotide Exchange Factors, Hypoglycemic Agents, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Mice, Transgenic, Phenotype, Signal Transduction, Sulfonylurea Compounds, Tolbutamide, beta-Arrestin 1, beta-Arrestin 2
Show Abstract · Added March 18, 2020
Beta-arrestin-1 and -2 (Barr1 and Barr2, respectively) are intracellular signaling molecules that regulate many important metabolic functions. We previously demonstrated that mice lacking Barr2 selectively in pancreatic beta-cells showed pronounced metabolic impairments. Here we investigated whether Barr1 plays a similar role in regulating beta-cell function and whole body glucose homeostasis. Initially, we inactivated the Barr1 gene in beta-cells of adult mice (beta-barr1-KO mice). Beta-barr1-KO mice did not display any obvious phenotypes in a series of in vivo and in vitro metabolic tests. However, glibenclamide and tolbutamide, two widely used antidiabetic drugs of the sulfonylurea (SU) family, showed greatly reduced efficacy in stimulating insulin secretion in the KO mice in vivo and in perifused KO islets in vitro. Additional in vivo and in vitro studies demonstrated that Barr1 enhanced SU-stimulated insulin secretion by promoting SU-mediated activation of Epac2. Pull-down and co-immunoprecipitation experiments showed that Barr1 can directly interact with Epac2 and that SUs such as glibenclamide promote Barr1/Epac2 complex formation, triggering enhanced Rap1 signaling and insulin secretion. These findings suggest that strategies aimed at promoting Barr1 signaling in beta-cells may prove useful for the development of efficacious antidiabetic drugs.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Peripherally delivered hepatopreferential insulin analog insulin-406 mimics the hypoglycaemia-sparing effect of portal vein human insulin infusion in dogs.
Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, Hastings JR, Madsen P, Kjeldsen TB, Hostrup S, Brand CL, Fledelius C, Nishimura E, Cherrington AD
(2019) Diabetes Obes Metab 21: 2294-2304
MeSH Terms: Animals, Blood Glucose, Diabetes Mellitus, Type 1, Dogs, Gluconeogenesis, Humans, Hypoglycemia, Hypoglycemic Agents, Infusions, Intravenous, Insulin, Insulin, Regular, Human, Liver, Male, Portal Vein
Show Abstract · Added June 26, 2019
AIMS - We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia.
MATERIALS AND METHODS - Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes.
RESULTS - Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUC during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both).
CONCLUSIONS - Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol.
Hong L, Li X, Bao Y, Duvall CL, Zhang C, Chen W, Peng C
(2019) Eur J Pharm Sci 133: 160-166
MeSH Terms: Animals, Brain, Camphanes, Drug Compounding, Drug Delivery Systems, Drug Liberation, Emulsions, Female, Hypoglycemic Agents, Male, Metformin, Rats, Sprague-Dawley
Show Abstract · Added April 10, 2019
Metformin hydrochloride (Met) is the first-line drug to treat type 2 diabetes and has shown high efficiency in reducing Alzheimer's disease in recent studies. Herein, a borneol W/O/W composite submicron emulsion containing Met (B-Met-W/O/W SE) was prepared, expecting longer in-vivo circulation time, better bioavailability and brain targeting of Met drug. In the optimized formulation, the mean droplets size, polydispersity index and encapsulation efficiency of the composite were 386.5 nm, 0.219 and 87.26%, respectively. FTIR analysis confirmed that Met interacted with carriers in B-Met-W/O/W SE. Compared with Met free drug, in-vitro release of Met in B-Met-W/O/W SE delivery system was much slower. In pharmacokinetic studies in rats, the AUC, MRT and t of the B-Met-W/O/W SE system were respectively 1.27, 2.49 and 4.02-fold higher than Met free drug system. The drug-targeting index of B-Met-W/O/W SE system to the brain tissue was also higher than that of Met free drug system and Met-W/O/W SE system. These results indicated that B-Met-W/O/W SE drug delivery system is a promising candidate in treating clinical Alzheimer's disease.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Metformin use and incidence cancer risk: evidence for a selective protective effect against liver cancer.
Murff HJ, Roumie CL, Greevy RA, Hackstadt AJ, McGowan LED, Hung AM, Grijalva CG, Griffin MR
(2018) Cancer Causes Control 29: 823-832
MeSH Terms: Aged, Carcinoma, Hepatocellular, Female, Humans, Hypoglycemic Agents, Incidence, Liver Neoplasms, Male, Metformin, Middle Aged, Proportional Hazards Models, Retrospective Studies, Risk, Sulfonylurea Compounds, United States, Veterans
Show Abstract · Added July 27, 2018
PURPOSE - Several observational studies suggest that metformin reduces incidence cancer risk; however, many of these studies suffer from time-related biases and several cancer outcomes have not been investigated due to small sample sizes.
METHODS - We constructed a propensity score-matched retrospective cohort of 84,434 veterans newly prescribed metformin or a sulfonylurea as monotherapy. We used Cox proportional hazard regression to assess the association between metformin use compared to sulfonylurea use and incidence cancer risk for 10 solid tumors. We adjusted for clinical covariates including hemoglobin A1C, antihypertensive and lipid-lowering medications, and body mass index. Incidence cancers were defined by ICD-9-CM codes.
RESULTS - Among 42,217 new metformin users and 42,217 matched-new sulfonylurea users, we identified 2,575 incidence cancers. Metformin was inversely associated with liver cancer (adjusted hazard ratio [aHR] = 0.44, 95% CI 0.31, 0.64) compared to sulfonylurea. We found no association between metformin use and risk of incidence bladder, breast, colorectal, esophageal, gastric, lung, pancreatic, prostate, or renal cancer when compared to sulfonylurea use.
CONCLUSIONS - In this large cohort study that accounted for time-related biases, we observed no association between the use of metformin and most cancers; however, we found a strong inverse association between metformin and liver cancer. Randomized trials of metformin for prevention of liver cancer would be useful to verify these observations.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Inhibition of Epidermal Growth Factor Receptor Activation Is Associated With Improved Diabetic Nephropathy and Insulin Resistance in Type 2 Diabetes.
Li Z, Li Y, Overstreet JM, Chung S, Niu A, Fan X, Wang S, Wang Y, Zhang MZ, Harris RC
(2018) Diabetes 67: 1847-1857
MeSH Terms: Albuminuria, Animals, Biomarkers, Crosses, Genetic, Cytokines, Diabetes Mellitus, Type 2, Diabetic Nephropathies, ErbB Receptors, Erlotinib Hydrochloride, Fibrosis, Glomerulonephritis, Hypoglycemic Agents, Insulin Resistance, Kidney, Macrophages, Membrane Transport Modulators, Mice, Knockout, Mice, Mutant Strains, Nitric Oxide Synthase Type III, Oxidative Stress, Protein Kinase Inhibitors, T-Lymphocytes, Transforming Growth Factor alpha
Show Abstract · Added November 9, 2018
Previous studies by us and others have indicated that renal epidermal growth factor receptors (EGFR) are activated in models of diabetic nephropathy (DN) and that inhibition of EGFR activity protects against progressive DN in type 1 diabetes. In this study we examined whether inhibition of EGFR activation would affect the development of DN in a mouse model of accelerated type 2 diabetes (BKS with endothelial nitric oxide knockout [eNOS]). eNOS mice received vehicle or erlotinib, an inhibitor of EGFR tyrosine kinase activity, beginning at 8 weeks of age and were sacrificed at 20 weeks of age. In addition, genetic models inhibiting EGFR activity () and transforming growth factor-α () were studied in this model of DN in type 2 diabetes. Compared with vehicle-treated mice, erlotinib-treated animals had less albuminuria and glomerulosclerosis, less podocyte loss, and smaller amounts of renal profibrotic and fibrotic components. Erlotinib treatment decreased renal oxidative stress, macrophage and T-lymphocyte infiltration, and the production of proinflammatory cytokines. Erlotinib treatment also preserved pancreas function, and these mice had higher blood insulin levels at 20 weeks, decreased basal blood glucose levels, increased glucose tolerance and insulin sensitivity, and increased blood levels of adiponectin compared with vehicle-treated mice. Similar to the aforementioned results, both and diabetic mice also had attenuated DN, preserved pancreas function, and decreased basal blood glucose levels. In this mouse model of accelerated DN, inhibition of EGFR signaling led to increased longevity.
© 2018 by the American Diabetes Association.
1 Communities
0 Members
0 Resources
23 MeSH Terms
Engagement with a Text-Messaging Intervention Improves Adherence in Adolescents with Type 1 Diabetes: Brief Report.
Zhang S, Hamburger E, Kahanda S, Lyttle M, Williams R, Jaser SS
(2018) Diabetes Technol Ther 20: 386-389
MeSH Terms: Adolescent, Blood Glucose, Diabetes Mellitus, Type 1, Female, Humans, Hypoglycemic Agents, Insulin, Male, Medication Adherence, Text Messaging, Treatment Outcome
Show Abstract · Added January 30, 2019
Adherence to diabetes management is a challenge for adolescents with type 1 diabetes (T1D). Positive psychology interventions have improved adherence to treatment recommendations in adults with chronic health conditions but have not been widely tested in pediatric populations. We hypothesized that higher engagement with a text-messaging intervention to promote positive affect would increase the effects on diabetes management among adolescents with T1D. Adolescents with T1D (n = 48) and their caregivers were randomized to either an attention control condition or a novel positive psychology intervention delivered through personalized automated text messaging. We examined rates of engagement (percent response to text messages) in relation to demographic factors, and we explored the effect of engagement in relation to adherence and glycemic control. Adolescent engagement was good (mean response rate of 76%) over the 8-week intervention. Engagement was related to adolescents' gender, race, baseline glycemic control, and blood glucose monitoring, but not to treatment type (pump vs. injection), diabetes duration, age, or household income. There was a significant effect of level of engagement on better caregiver-reported adherence, but adolescents' engagement was not related to self-reported adherence or glycemic control. These results indicate feasibility and initial efficacy of using automated text-messaging to deliver an intervention aimed at promoting adherence in adolescents with T1D.
0 Communities
2 Members
0 Resources
MeSH Terms
Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca Sensitivity of Insulin Secretion Vesicles.
Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G
(2018) Dev Cell 45: 347-361.e5
MeSH Terms: Animals, Biological Transport, Calcium, Cell Differentiation, Female, Gene Expression Regulation, Glucose, Humans, Hypoglycemic Agents, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Knockout, Sweetening Agents, Synaptotagmins
Show Abstract · Added April 17, 2018
Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca concentrations, suggesting differences in the Ca sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca binding paralog of the β cell Ca sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca sensing plays in regulating β cell maturation.
Copyright © 2018 Elsevier Inc. All rights reserved.
4 Communities
4 Members
0 Resources
17 MeSH Terms
The Vasculature in Prediabetes.
Wasserman DH, Wang TJ, Brown NJ
(2018) Circ Res 122: 1135-1150
MeSH Terms: Angiotensin-Converting Enzyme Inhibitors, Animals, Blood Vessels, Cardiovascular Diseases, Combined Modality Therapy, Diabetes Mellitus, Type 2, Diet, Reducing, Disease Progression, Endothelium, Vascular, Extracellular Matrix, Fatty Acids, Nonesterified, Fibrinolysis, Glucose, Humans, Hyperglycemia, Hypoglycemic Agents, Inflammation, Insulin Resistance, Life Style, Metabolic Syndrome, Mice, MicroRNAs, Microcirculation, Muscle, Skeletal, Obesity, Prediabetic State, Risk, Weight Loss
Show Abstract · Added March 26, 2019
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
© 2018 American Heart Association, Inc.
1 Communities
0 Members
0 Resources
28 MeSH Terms
Measures of Adherence and Challenges in Using Glucometer Data in Youth with Type 1 Diabetes: Rethinking the Value of Self-Report.
Datye KA, Patel NJ, Jaser SS
(2017) J Diabetes Res 2017: 1075428
MeSH Terms: Adolescent, Adolescent Behavior, Blood Glucose, Blood Glucose Self-Monitoring, Caregivers, Cross-Sectional Studies, Diabetes Mellitus, Type 1, Female, Glycated Hemoglobin A, Humans, Hyperglycemia, Hypoglycemia, Hypoglycemic Agents, Insulin, Insulin Infusion Systems, Male, Patient Compliance, Self Report, Self-Management, Tennessee
Show Abstract · Added May 18, 2018
Purpose - The current study compares the relative strength of associations of different adherence measures with glycemic control in adolescents with type 1 diabetes, while highlighting the challenges in using more objective measures (i.e., glucometer data).
Methods - Adolescents with type 1 diabetes ( = 149) and their caregivers completed a questionnaire measure assessing adolescents' adherence (Self-Care Inventory (SCI)) to the diabetes regimen. Adolescents' glucometers were downloaded to determine average blood glucose checks per day, as an objective measure of adherence. A measure of glycemic control (hemoglobin A1c (HbA1c)) was obtained as part of adolescents' regular clinic visits.
Results - Adolescents' self-reported adherence to the treatment regimen was more strongly correlated with HbA1c than caregivers' reports of adherence. In multivariate analyses, both adolescents' self-report of adherence and average blood glucose checks per day (obtained via a glucometer) were significant predictors of HbA1c. Challenges to obtaining glucometer data were identified.
Conclusions - The findings highlight adolescents' self-report of adherence using the SCI as a brief and meaningful measure to understand and improve adolescents' glycemic control, particularly when glucometer data is difficult to obtain.
0 Communities
1 Members
0 Resources
20 MeSH Terms