Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 84

Publication Record

Connections

Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.
Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, Sicheri F, Jessen N, Wasserman DH, Sakamoto K
(2018) Nat Med 24: 1395-1406
MeSH Terms: Adenosine Monophosphate, Aminoimidazole Carboxamide, Animals, Base Sequence, Chickens, Disease Models, Animal, Fructose-Bisphosphatase, Glucose, Glucose Intolerance, Homeostasis, Humans, Hypoglycemia, Liver, Metformin, Mice, Inbred C57BL, Mutation, Obesity, Prodrugs, Ribonucleotides
Show Abstract · Added March 26, 2019
Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Measures of Adherence and Challenges in Using Glucometer Data in Youth with Type 1 Diabetes: Rethinking the Value of Self-Report.
Datye KA, Patel NJ, Jaser SS
(2017) J Diabetes Res 2017: 1075428
MeSH Terms: Adolescent, Adolescent Behavior, Blood Glucose, Blood Glucose Self-Monitoring, Caregivers, Cross-Sectional Studies, Diabetes Mellitus, Type 1, Female, Glycated Hemoglobin A, Humans, Hyperglycemia, Hypoglycemia, Hypoglycemic Agents, Insulin, Insulin Infusion Systems, Male, Patient Compliance, Self Report, Self-Management, Tennessee
Show Abstract · Added May 18, 2018
Purpose - The current study compares the relative strength of associations of different adherence measures with glycemic control in adolescents with type 1 diabetes, while highlighting the challenges in using more objective measures (i.e., glucometer data).
Methods - Adolescents with type 1 diabetes ( = 149) and their caregivers completed a questionnaire measure assessing adolescents' adherence (Self-Care Inventory (SCI)) to the diabetes regimen. Adolescents' glucometers were downloaded to determine average blood glucose checks per day, as an objective measure of adherence. A measure of glycemic control (hemoglobin A1c (HbA1c)) was obtained as part of adolescents' regular clinic visits.
Results - Adolescents' self-reported adherence to the treatment regimen was more strongly correlated with HbA1c than caregivers' reports of adherence. In multivariate analyses, both adolescents' self-report of adherence and average blood glucose checks per day (obtained via a glucometer) were significant predictors of HbA1c. Challenges to obtaining glucometer data were identified.
Conclusions - The findings highlight adolescents' self-report of adherence using the SCI as a brief and meaningful measure to understand and improve adolescents' glycemic control, particularly when glucometer data is difficult to obtain.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Risk of Hypoglycemia Following Hospital Discharge in Patients With Diabetes and Acute Kidney Injury.
Hung AM, Siew ED, Wilson OD, Perkins AM, Greevy RA, Horner J, Abdel-Kader K, Parr SK, Roumie CL, Griffin MR, Ikizler TA, Speroff T, Matheny ME
(2018) Diabetes Care 41: 503-512
MeSH Terms: Acute Kidney Injury, Adult, Aged, Blood Glucose, Diabetes Mellitus, Diabetic Nephropathies, Female, Glipizide, Glyburide, Humans, Hypoglycemia, Kidney Function Tests, Male, Middle Aged, Patient Discharge, Retrospective Studies, Risk Factors
Show Abstract · Added November 29, 2018
OBJECTIVE - Hypoglycemia is common in patients with diabetes. The risk of hypoglycemia after acute kidney injury (AKI) is not well defined. The purpose of this study was to compare the risk for postdischarge hypoglycemia among hospitalized patients with diabetes who do and do not experience AKI.
RESEARCH DESIGN AND METHODS - We performed a propensity-matched analysis of patients with diabetes, with and without AKI, using a retrospective national cohort of veterans hospitalized between 2004 and 2012. AKI was defined as a 0.3 mg/dL or 50% increase in serum creatinine from baseline to peak serum creatinine during hospitalization. Hypoglycemia was defined as hospital admission or an emergency department visit for hypoglycemia or as an outpatient blood glucose <60 mg/dL. Time to incident hypoglycemia within 90 days postdischarge was examined using Cox proportional hazards models. Prespecified subgroup analyses by renal recovery, baseline chronic kidney disease, preadmission drug regimen, and HbA were performed.
RESULTS - We identified 65,151 propensity score-matched pairs with and without AKI. The incidence of hypoglycemia was 29.6 (95% CI 28.9-30.4) and 23.5 (95% CI 22.9-24.2) per 100 person-years for patients with and without AKI, respectively. After adjustment, AKI was associated with a 27% increased risk of hypoglycemia (hazard ratio [HR] 1.27 [95% CI 1.22-1.33]). For patients with full recovery, the HR was 1.18 (95% CI 1.12-1.25); for partial recovery, the HR was 1.30 (95% CI 1.23-1.37); and for no recovery, the HR was 1.48 (95% CI 1.36-1.60) compared with patients without AKI. Across all antidiabetes drug regimens, patients with AKI experienced hypoglycemia more frequently than patients without AKI, though the incidence of hypoglycemia was highest among insulin users, followed by glyburide and glipizide users, respectively.
CONCLUSIONS - AKI is a risk factor for hypoglycemia in the postdischarge period. Studies to identify risk-reduction strategies in this population are warranted.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
MeSH Terms
Sleep in children with type 1 diabetes and their parents in the T1D Exchange.
Jaser SS, Foster NC, Nelson BA, Kittelsrud JM, DiMeglio LA, Quinn M, Willi SM, Simmons JH, T1D Exchange Clinic Network
(2017) Sleep Med 39: 108-115
MeSH Terms: Blood Glucose, Child, Diabetes Mellitus, Type 1, Female, Glycated Hemoglobin A, Humans, Hypoglycemia, Male, Parents, Registries, Sleep, Sleep Wake Disorders, Surveys and Questionnaires
Show Abstract · Added May 18, 2018
OBJECTIVES - Sleep has physiological and behavioral impacts on diabetes outcomes, yet little is known about the impact of sleep disturbances in children with type 1 diabetes. The current study sought to characterize sleep in children with type 1 diabetes and in their parents and to examine the associations between child sleep, glycemic control and adherence, parent sleep and well-being, parental fear of hypoglycemia, and nocturnal caregiving behavior.
METHODS - Surveys were emailed to parents of 2- to 12-year-old participants in the Type 1 Diabetes (T1D) Exchange clinic registry. Clinical data were obtained from the registry for the 515 respondents.
RESULTS - In our sample, 67% of children met criteria for poor sleep quality. Child sleep quality was related to glycemic control (HbA1c of 7.9% [63 mmol/mol] in children with poor sleep quality vs 7.6% [60 mmol/mol] in children with non-poor sleep quality; P < 0.001) but not mean frequency of blood glucose monitoring (BGM) (7.6 times/day vs 7.4 in poor/non-poor quality; P = 0.56). Associations were similar for sleep duration. Children with poor sleep quality were more likely to experience severe hypoglycemia (4% in children with poor sleep quality vs 1% in children with non-poor sleep quality; P = 0.05) and more likely to experience DKA (7% vs 4%, respectively; P < 0.001). Poorer child sleep quality was associated with poorer parental sleep quality, parental well-being, and fear of hypoglycemia (P < 0.001 for all). Child sleep was not related to the use of diabetes-related technology (CGM, insulin pump).
CONCLUSIONS - Sleep may be a modifiable factor to improve glycemic control and reduce parental distress.
Copyright © 2017 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Glucose autoregulation is the dominant component of the hormone-independent counterregulatory response to hypoglycemia in the conscious dog.
Gregory JM, Rivera N, Kraft G, Winnick JJ, Farmer B, Allen EJ, Donahue EP, Smith MS, Edgerton DS, Williams PE, Cherrington AD
(2017) Am J Physiol Endocrinol Metab 313: E273-E283
MeSH Terms: Adipose Tissue, Adrenalectomy, Animals, Blood Glucose, Dogs, Gluconeogenesis, Glucose, Glucose Clamp Technique, Homeostasis, Hypoglycemia, Hypoglycemic Agents, Infusions, Intravenous, Insulin, Liver, Liver Glycogen, Muscle, Skeletal, Norepinephrine, Portal Vein, Sympathetic Nervous System
Show Abstract · Added April 23, 2018
The contribution of hormone-independent counterregulatory signals in defense of insulin-induced hypoglycemia was determined in adrenalectomized, overnight-fasted conscious dogs receiving hepatic portal vein insulin infusions at a rate 20-fold basal. Either euglycemia was maintained () or hypoglycemia (≈45 mg/dl) was allowed to occur. There were three hypoglycemic groups: one in which hepatic autoregulation against hypoglycemia occurred in the absence of sympathetic nervous system input (), one in which autoregulation occurred in the presence of norepinephrine (NE) signaling to fat and muscle (), and one in which autoregulation occurred in the presence of NE signaling to fat, muscle, and liver (). Average net hepatic glucose balance (NHGB) during the last hour for was -0.7 ± 0.1, 0.3 ± 0.1 ( < 0.01 vs. ), 0.7 ± 0.1 ( = 0.01 vs. ), and 0.8 ± 0.1 ( = 0.7 vs. ) mg·kg·min, respectively. Hypoglycemia per se () increased NHGB by causing an inhibition of net hepatic glycogen synthesis. NE signaling to fat and muscle () increased NHGB further by mobilizing gluconeogenic precursors resulting in a rise in gluconeogenesis. Lowering glucose per se decreased nonhepatic glucose uptake by 8.9 mg·kg·min, and the addition of increased neural efferent signaling to muscle and fat blocked glucose uptake further by 3.2 mg·kg·min The addition of increased neural efferent input to liver did not affect NHGB or nonhepatic glucose uptake significantly. In conclusion, even in the absence of increases in counterregulatory hormones, the body can defend itself against hypoglycemia using glucose autoregulation and increased neural efferent signaling, both of which stimulate hepatic glucose production and limit glucose utilization.
Copyright © 2017 the American Physiological Society.
0 Communities
1 Members
0 Resources
MeSH Terms
Islet Transplantation for Hypoglycemia Unawareness/Severe Hypoglycemia: Caveat Emptor.
Harlan DM
(2016) Diabetes Care 39: 1072-4
MeSH Terms: Blood Glucose, Diabetes Mellitus, Type 1, Humans, Hypoglycemia, Islets of Langerhans Transplantation
Added October 12, 2016
0 Communities
1 Members
0 Resources
5 MeSH Terms
Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD
(2016) J Clin Invest 126: 2236-48
MeSH Terms: Animals, Blood Glucose, Brain, Diabetes Mellitus, Type 1, Disease Models, Animal, Dogs, Female, Fructose, Glucose, Glucose Clamp Technique, Humans, Hypoglycemia, Insulin, Lactic Acid, Lipid Metabolism, Liver, Liver Glycogen, Male, Signal Transduction
Show Abstract · Added May 29, 2016
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Comparative Effectiveness of Insulin versus Combination Sulfonylurea and Insulin: a Cohort Study of Veterans with Type 2 Diabetes.
Min JY, Griffin MR, Hung AM, Grijalva CG, Greevy RA, Liu X, Elasy T, Roumie CL
(2016) J Gen Intern Med 31: 638-46
MeSH Terms: Adult, Aged, Cardiovascular Diseases, Cohort Studies, Comparative Effectiveness Research, Diabetes Mellitus, Type 2, Drug Substitution, Drug Therapy, Combination, Female, Humans, Hypoglycemia, Hypoglycemic Agents, Insulin, Male, Middle Aged, Retrospective Studies, Sulfonylurea Compounds, United States, Veterans
Show Abstract · Added July 27, 2018
BACKGROUND - Type 2 diabetes patients often initiate treatment with a sulfonylurea and subsequently intensify their therapy with insulin. However, information on optimal treatment regimens for these patients is limited.
OBJECTIVE - To compare risk of cardiovascular disease (CVD) and hypoglycemia between sulfonylurea initiators who switch to or add insulin.
DESIGN - This was a retrospective cohort assembled using national Veterans Health Administration (VHA), Medicare, and National Death Index databases.
PARTICIPANTS - Veterans who initiated diabetes treatment with a sulfonylurea between 2001 and 2008 and intensified their regimen with insulin were followed through 2011.
MAIN MEASURES - The association between insulin versus sulfonylurea + insulin and time to CVD or hypoglycemia were evaluated using Cox proportional hazard models in a 1:1 propensity score-matched cohort. CVD included hospitalization for acute myocardial infarction or stroke, or cardiovascular mortality. Hypoglycemia included hospitalizations or emergency visits for hypoglycemia, or outpatient blood glucose measurements <60 mg/dL. Subgroups included age < 65 and ≥ 65 years and estimated glomerular filtration rate ≥ 60 and < 60 ml/min.
KEY FINDINGS - There were 1646 and 3728 sulfonylurea monotherapy initiators who switched to insulin monotherapy or added insulin, respectively. The 1596 propensity score-matched patients in each group had similar baseline characteristics at insulin initiation. The rate of CVD per 1000 person-years among insulin versus sulfonylurea + insulin users were 49.3 and 56.0, respectively [hazard ratio (HR) 0.85, 95 % confidence interval (CI) 0.64, 1.12]. Rates of first and recurrent hypoglycemia events per 1000 person-years were 74.0 and 100.0 among insulin users compared to 78.9 and 116.8 among sulfonylurea plus insulin users, yielding HR (95 % CI) of 0.94 (0.76, 1.16) and 0.87 (0.69, 1.10), respectively. Subgroup analysis results were consistent with the main findings.
CONCLUSIONS - Compared to sulfonylurea users who added insulin, those who switched to insulin alone had numerically lower CVD and hypoglycemia events, but these differences in risk were not statistically significant.
0 Communities
1 Members
0 Resources
MeSH Terms
Risk of hypoglycemia following intensification of metformin treatment with insulin versus sulfonylurea.
Roumie CL, Min JY, Greevy RA, Grijalva CG, Hung AM, Liu X, Elasy T, Griffin MR
(2016) CMAJ 188: E104-E112
MeSH Terms: Aged, Blood Glucose, Diabetes Mellitus, Type 2, Dose-Response Relationship, Drug, Drug Therapy, Combination, Female, Follow-Up Studies, Glycated Hemoglobin A, Humans, Hypoglycemia, Hypoglycemic Agents, Incidence, Insulin, Male, Metformin, Middle Aged, Propensity Score, Retrospective Studies, Sulfonylurea Compounds, Survival Rate, Tennessee
Show Abstract · Added July 27, 2018
BACKGROUND - Hypoglycemia remains a common life-threatening event associated with diabetes treatment. We compared the risk of first or recurrent hypoglycemia event among metformin initiators who intensified treatment with insulin versus sulfonylurea.
METHODS - We assembled a retrospective cohort using databases of the Veterans Health Administration, Medicare and the National Death Index. Metformin initiators who intensified treatment with insulin or sulfonylurea were followed to either their first or recurrent hypoglycemia event using Cox proportional hazard models. Hypoglycemia was defined as hospital admission or an emergency department visit for hypoglycemia, or an outpatient blood glucose value of less than 3.3 mmol/L. We conducted additional analyses for risk of first hypoglycemia event, with death as the competing risk.
RESULTS - Among 178,341 metformin initiators, 2948 added insulin and 39,990 added sulfonylurea. Propensity score matching yielded 2436 patients taking metformin plus insulin and 12,180 taking metformin plus sulfonylurea. Patients took metformin for a median of 14 (interquartile range [IQR] 5-30) months, and the median glycated hemoglobin level was 8.1% (IQR 7.2%-9.9%) at intensification. In the group who added insulin, 121 first hypoglycemia events occurred, and 466 first events occurred in the group who added sulfonylurea (30.9 v. 24.6 events per 1000 person-years; adjusted hazard ratio [HR] 1.30, 95% confidence interval [CI] 1.06-1.59). For recurrent hypoglycemia, there were 159 events in the insulin group and 585 events in the sulfonylurea group (39.1 v. 30.0 per 1000 person-years; adjusted HR 1.39, 95% CI 1.12-1.72). In separate competing risk analyses, the adjusted HR for hypoglycemia was 1.28 (95% CI 1.04-1.56).
INTERPRETATION - Among patients using metformin who could use either insulin or sulfonylurea, the addition of insulin was associated with a higher risk of hypoglycemia than the addition of sulfonylurea. This finding should be considered by patients and clinicians when discussing the risks and benefits of adding insulin versus a sulfonylurea.
© 2016 Canadian Medical Association or its licensors.
0 Communities
1 Members
0 Resources
MeSH Terms
Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes.
Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, Hastings JR, Allen EJ, Donahue EP, Rivera N, Winnick JJ, Edgerton DS, Nishimura E, Fledelius C, Brand CL, Cherrington AD
(2015) Diabetes 64: 3439-51
MeSH Terms: Administration, Intravenous, Animals, Blood Glucose, Diabetes Mellitus, Type 1, Dogs, Glucagon, Glucose, Humans, Hypoglycemia, Insulin, Male, Portal Vein, Somatostatin
Show Abstract · Added July 15, 2015
Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal. In protocol 1, a full counterregulatory response was allowed, whereas in protocol 2, glucagon was fixed at basal, mimicking the diminished α-cell response to hypoglycemia seen in T1DM. In protocol 1, glucose fell faster with Pe insulin than with Po insulin, reaching 56 ± 3 vs. 70 ± 6 mg/dL (P = 0.04) at 60 min. The change in area under the curve (ΔAUC) for glucagon was similar between Pe and Po, but the peak occurred earlier in Pe. The ΔAUC for epinephrine was greater with Pe than with Po (67 ± 17 vs. 36 ± 14 ng/mL/180 min). In protocol 2, glucose also fell more rapidly than in protocol 1 and fell faster in Pe than in Po, reaching 41 ± 3 vs. 67 ± 2 mg/dL (P < 0.01) by 60 min. Without a rise in glucagon, the epinephrine responses were much larger (ΔAUC of 204 ± 22 for Pe vs. 96 ± 29 ng/mL/180 min for Po). In summary, Pe insulin delivery exacerbates hypoglycemia, particularly in the presence of a diminished glucagon response. Po vein insulin delivery, or strategies that mimic it (i.e., liver-preferential insulin analogs), should therefore lessen hypoglycemia.
© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
5 Members
2 Resources
13 MeSH Terms