Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 194

Publication Record

Connections

rhIGF-1 Therapy: A Silver Bullet for Bronchopulmonary Dysplasia Prevention?
Plosa EJ, Benjamin JT
(2020) Am J Respir Crit Care Med 201: 1032-1033
MeSH Terms: Bronchopulmonary Dysplasia, Humans, Hypertension, Pulmonary, Infant, Newborn
Added March 18, 2020
0 Communities
2 Members
0 Resources
4 MeSH Terms
Echocardiographic Detection of Occult Diastolic Dysfunction in Pulmonary Hypertension After Fluid Challenge.
Agrawal V, D'Alto M, Naeije R, Romeo E, Xu M, Assad TR, Robbins IM, Newman JH, Pugh ME, Hemnes AR, Brittain EL
(2019) J Am Heart Assoc 8: e012504
MeSH Terms: Adult, Aged, Cardiac Catheterization, Diastole, Echocardiography, Doppler, Female, Heart Failure, Hemodynamics, Humans, Hypertension, Pulmonary, Infusions, Parenteral, Male, Middle Aged, Predictive Value of Tests, Prospective Studies, Reproducibility of Results, Retrospective Studies, Saline Solution, Ventricular Dysfunction, Left, Ventricular Function, Left
Show Abstract · Added March 8, 2020
Background Identification of occult diastolic dysfunction often requires invasive right heart catheterization with provocative maneuvers such as fluid challenge. Non-invasive predictors of occult diastolic dysfunction have not been identified. We hypothesized that echocardiographic measures of diastolic function are associated with occult diastolic dysfunction identified at catheterization. Methods and Results We retrospectively examined hemodynamic and echocardiographic data from consecutive patients referred for right heart catheterization with fluid challenge from 2009 to 2017. A replication cohort of 52 patients who prospectively underwent simultaneous echocardiography and right heart catheterization before and after fluid challenge at Monaldi Hospital, Naples, Italy. In the retrospective cohort of 126 patients (83% female, 56+14 years), 27/126 (21%) had occult diastolic dysfunction. After adjusting for tricuspid regurgitant velocity and left atrial volume index, E velocity (odds ratio 1.8, 95% CI 1.1-2.9, P=0.01) and E/e' (odds ratio 1.9, 95% CI 1.1-3, P=0.005) were associated with occult diastolic dysfunction with an optimal threshold of E/e' >8.6 for occult diastolic dysfunction (sensitivity 70%, specificity 64%). In the prospective cohort, 5/52 (10%) patients had diastolic dysfunction after fluid challenge. Resting E/e' (odds ratio 8.75, 95% CI 2.3-33, P=0.001) and E velocity (odds ratio 7.7, 95% CI 2-29, P=0.003) remained associated with occult diastolic dysfunction with optimal threshold of E/e' >8 (sensitivity 73%, specificity 90%). Conclusions Among patients referred for right heart catheterization with fluid challenge, E velocity and E/e' are associated with occult diastolic dysfunction after fluid challenge. These findings suggest that routine echocardiographic measurements may help identify patients like to have occult diastolic dysfunction non-invasively.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Bone Marrow-Derived Proangiogenic Cells Mediate Pulmonary Arteriole Stiffening via Serotonin 2B Receptor Dependent Mechanism.
Bloodworth NC, Clark CR, West JD, Snider JC, Gaskill C, Shay S, Scott C, Bastarache J, Gladson S, Moore C, D'Amico R, Brittain EL, Tanjore H, Blackwell TS, Majka SM, Merryman WD
(2018) Circ Res 123: e51-e64
MeSH Terms: Angiogenesis Inhibitors, Animals, Arterioles, Cell Lineage, Cells, Cultured, Hypertension, Pulmonary, Indoles, Lung, Mice, Mice, Inbred C57BL, Myeloid Progenitor Cells, Pyrroles, Receptor, Serotonin, 5-HT2B, Vascular Stiffness
Show Abstract · Added April 2, 2019
RATIONALE - Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis.
OBJECTIVE - To determine whether BM-derived PACs directly contributed to experimental pulmonary hypertension (PH) by promoting small-vessel stiffening through 5-HT (serotonin 2B receptor)-mediated signaling.
METHODS AND RESULTS - We performed BM transplants using transgenic donor animals expressing diphtheria toxin secondary to activation of an endothelial-specific tamoxifen-inducible Cre and induced experimental PH using hypoxia with SU5416 to enhance endovascular injury and ablated BM-derived PACs, after which we measured right ventricular systolic pressures in a closed-chest procedure. BM-derived PAC lineage tracing was accomplished by transplanting BM from transgenic donor animals with fluorescently labeled hematopoietic cells and treating mice with a 5-HT antagonist. BM-derived PAC ablation both prevented and reversed experimental PH with SU5416-enhanced endovascular injury, reducing the number of muscularized pulmonary arterioles and normalizing arteriole stiffness as measured by atomic force microscopy. Similarly, treatment with a pharmacological antagonist of 5-HT also prevented experimental PH, reducing the number and stiffness of muscularized pulmonary arterioles. PACs accelerated pulmonary microvascular endothelial cell injury response in vitro, and the presence of BM-derived PACs significantly correlated with stiffer pulmonary arterioles in pulmonary arterial hypertension patients and mice with experimental PH. RNA sequencing of BM-derived PACs showed that 5-HT antagonism significantly altered biologic pathways regulating cell proliferation, locomotion and migration, and cytokine production and response to cytokine stimulus.
CONCLUSIONS - Together, our findings illustrate that BM-derived PACs directly contribute to experimental PH with SU5416-enhanced endovascular injury by mediating small-vessel stiffening and remodeling in a 5-HT signaling-dependent manner.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Pulmonary Vascular Platform Models the Effects of Flow and Pressure on Endothelial Dysfunction in Associated Pulmonary Arterial Hypertension.
D'Amico RW, Faley S, Shim HN, Prosser JR, Agrawal V, Bellan LM, West JD
(2018) Int J Mol Sci 19:
MeSH Terms: Animals, Bone Morphogenetic Protein Receptors, Type II, Cell Line, Disease Models, Animal, Endothelial Cells, Hypertension, Pulmonary, Mice, Sequence Analysis, RNA
Show Abstract · Added April 2, 2019
Endothelial dysfunction is a known consequence of bone morphogenetic protein type II receptor () mutations seen in pulmonary arterial hypertension (PAH). However, standard 2D cell culture models fail to mimic the mechanical environment seen in the pulmonary vasculature. Hydrogels have emerged as promising platforms for 3D disease modeling due to their tunable physical and biochemical properties. In order to recreate the mechanical stimuli seen in the pulmonary vasculature, we have created a novel 3D hydrogel-based pulmonary vasculature model ("artificial arteriole") that reproduces the pulsatile flow rates and pressures seen in the human lung. Using this platform, we studied both and WT endothelial cells to better understand how the addition of oscillatory flow and physiological pressure influenced gene expression, cell morphology, and cell permeability. The addition of oscillatory flow and pressure resulted in several gene expression changes in both WT and cells. However, for many pathways with relevance to PAH etiology, cells responded differently when compared to the WT cells. cells were also found not to elongate in the direction of flow, and instead remained stagnant in morphology despite mechanical stimuli. The increased permeability of the layer was successfully reproduced in our artificial arteriole, with the addition of flow and pressure not leading to significant changes in permeability. Our artificial arteriole is the first to model many mechanical properties seen in the lung. Its tunability enables several new opportunities to study the endothelium in pulmonary vascular disease with increased control over environmental parameters.
0 Communities
2 Members
0 Resources
MeSH Terms
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension.
Bryant AJ, Mehrad B, Brusko TM, West JD, Moldawer LL
(2018) Int J Mol Sci 19:
MeSH Terms: Animals, Dendritic Cells, Humans, Hypertension, Pulmonary, Myeloid-Derived Suppressor Cells, Receptors, Interleukin-8B, Signal Transduction
Show Abstract · Added April 2, 2019
Myeloid⁻derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow⁻derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
0 Communities
1 Members
0 Resources
MeSH Terms
A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension.
Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J
(2018) Eur Respir J 51:
MeSH Terms: Adult, Aged, Animals, Biomarkers, Cytokines, Female, Gene Expression, Humans, Hypertension, Pulmonary, Male, Middle Aged, Peptidyl-Dipeptidase A, Pilot Projects, Proof of Concept Study, Proto-Oncogene Proteins, Pulmonary Artery, Receptors, G-Protein-Coupled, Superoxide Dismutase, Swine, Vascular Resistance
Show Abstract · Added March 26, 2019
Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1-7) (Ang-(1-7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1-7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2-4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.
Copyright ©ERS 2018.
0 Communities
3 Members
0 Resources
20 MeSH Terms
Precision Modeling of Pulmonary Hypertension Pathology with Induced Pluripotent Stem Cell-derived Cells.
West JD, Carrier EJ
(2018) Am J Respir Crit Care Med 198: 154-155
MeSH Terms: Bone Morphogenetic Protein Receptors, Type II, Humans, Hypertension, Hypertension, Pulmonary, Induced Pluripotent Stem Cells, Mutation, Phenotype
Added March 26, 2019
0 Communities
2 Members
0 Resources
7 MeSH Terms
Update in Pulmonary Vascular Disease 2016 and 2017.
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB
(2018) Am J Respir Crit Care Med 198: 13-23
MeSH Terms: Humans, Hypertension, Pulmonary, Lung, Vascular Diseases
Added June 7, 2018
0 Communities
1 Members
0 Resources
4 MeSH Terms
Autonomic Nervous System in Pulmonary Arterial Hypertension: Time to Rest and Digest.
Hemnes AR, Brittain EL
(2018) Circulation 137: 925-927
MeSH Terms: Autonomic Nervous System, Familial Primary Pulmonary Hypertension, Humans, Hypertension, Pulmonary, Vascular Remodeling, Ventricular Dysfunction, Right
Added June 7, 2018
0 Communities
1 Members
0 Resources
6 MeSH Terms
Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA.
Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, deCaestecker M, Fessel JP, Marnett LJ
(2018) Nucleic Acids Res 46: 3458-3467
MeSH Terms: Animals, Bone Morphogenetic Protein Receptors, Type II, DNA Adducts, DNA, Mitochondrial, Electron Transport, Endothelial Cells, Gene Expression Regulation, Humans, Hypertension, Pulmonary, Lipid Peroxidation, Mice, Mice, Transgenic, Mitochondria, Mutagenesis, Oxidants, Oxidative Stress, Purine Nucleosides, Reactive Oxygen Species, Superoxides
Show Abstract · Added March 14, 2018
Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.
0 Communities
3 Members
0 Resources
19 MeSH Terms