, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 14

Publication Record

Connections

The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria.
Singh K, Al-Greene NT, Verriere TG, Coburn LA, Asim M, Barry DP, Allaman MM, Hardbower DM, Delgado AG, Piazuelo MB, Vallance BA, Gobert AP, Wilson KT
(2016) PLoS Pathog 12: e1005984
MeSH Terms: Animals, Blotting, Western, Cationic Amino Acid Transporter 2, Cell Line, Citrobacter rodentium, Disease Models, Animal, Enterobacteriaceae Infections, Host-Parasite Interactions, Humans, Immunophenotyping, Mice, Mice, Inbred C57BL, Mice, Knockout, Transfection
Show Abstract · Added October 27, 2016
Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter rodentium, an attaching and effacing enteric pathogen that causes colitis. Induction of SLC7A2 was upregulated in colitis tissues, and localized predominantly to colonic epithelial cells. Compared to wild-type mice, Slc7a2-/-mice infected with C. rodentium had improved survival and decreased weight loss, colon weight, and histologic injury; this was associated with decreased colonic macrophages, dendritic cells, granulocytes, and Th1 and Th17 cells. In infected Slc7a2-/-mice, there were decreased levels of the proinflammatory cytokines G-CSF, TNF-α, IL-1α, IL-1β, and the chemokines CXCL1, CCL2, CCL3, CCL4, CXCL2, and CCL5. In bone marrow chimeras, the recipient genotype drove the colitis phenotype, indicative of the importance of epithelial, rather than myeloid SLC7A2. Mice lacking Slc7a2 exhibited reduced adherence of C. rodentium to the colonic epithelium and decreased expression of Talin-1, a focal adhesion protein involved in the attachment of the bacterium. The importance of SLC7A2 and Talin-1 in the intimate attachment of C. rodentium and induction of inflammatory response was confirmed in vitro, using conditionally-immortalized young adult mouse colon (YAMC) cells with shRNA knockdown of Slc7a2 or Tln1. Inhibition of L-Arg uptake with the competitive inhibitor, L-lysine (L-Lys), also prevented attachment of C. rodentium and chemokine expression. L-Lys and siRNA knockdown confirmed the role of L-Arg and SLC7A2 in human Caco-2 cells co-cultured with enteropathogenic Escherichia coli. Overexpression of SLC7A2 in human embryonic kidney cells increased bacterial adherence and chemokine expression. Taken together, our data indicate that C. rodentium enhances its own pathogenicity by inducing the expression of SLC7A2 to favor its attachment to the epithelium and thus create its ecological niche.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Chronic Bacterial Pathogens: Mechanisms of Persistence.
Byndloss MX, Tsolis RM
(2016) Microbiol Spectr 4:
MeSH Terms: Animals, Antibodies, Bacterial, Bacteria, Bacterial Infections, Chronic Disease, Cytokines, Host-Parasite Interactions, Humans, Immune Evasion, Immune System, Immunity, Innate, Macrophages
Show Abstract · Added March 30, 2020
Many bacterial pathogens can cause acute infections that are cleared with the onset of adaptive immunity, but a subset of these pathogens can establish persistent, and sometimes lifelong, infections. While bacteria that cause chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This article will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus and Salmonella enterica serovar Typhi, to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system.
0 Communities
1 Members
0 Resources
MeSH Terms
Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections.
Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, Chazin WJ, Bae T
(2015) PLoS Pathog 11: e1005026
MeSH Terms: Animals, Bacterial Proteins, Blotting, Western, Disease Models, Animal, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Host-Parasite Interactions, Leukocyte L1 Antigen Complex, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Polymerase Chain Reaction, Protein Kinases, Staphylococcal Infections, Staphylococcus aureus, Virulence
Show Abstract · Added February 5, 2016
Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata).
Berzitis EA, Minigan JN, Hallett RH, Newman JA
(2014) Glob Chang Biol 20: 2778-92
MeSH Terms: Animal Distribution, Animals, Climate Change, Coleoptera, Forecasting, Geographic Information Systems, Geography, Host-Parasite Interactions, Models, Biological, Soybeans
Show Abstract · Added March 20, 2014
The bean leaf beetle, Cerotoma trifurcata, has become a major pest of soybean throughout its North American range. With a changing climate, there is the potential for this pest to further expand its distribution and become an increasingly severe pest in certain regions. To examine this possibility, we developed bioclimatic envelope models for both the bean leaf beetle, and its most important agronomic host plant, soybean (Glycine max). These two models were combined to examine the potential future pest status of the beetle using climate change projections from multiple general circulation models (GCMs) and climate change scenarios. Despite the broad tolerances of soybean, incorporation of host plant availability substantially decreased the suitable and favourable areas for the bean leaf beetle as compared to an evaluation based solely on the climate envelope of the beetle, demonstrating the importance of incorporating biotic interactions in these predictions. The use of multiple GCM-scenario combinations also revealed differences in predictions depending on the choice of GCM, with scenario choice having less of an impact. While the Norwegian model predicted little northward expansion of the beetle from its current northern range limit of southern Ontario and overall decreases in suitable and favourable areas over time, the Canadian and Russian models predict that much of Ontario and Quebec will become suitable for the beetle in the future, as well as Manitoba under the Russian model. The Russian model also predicts expansion of the suitable and favourable areas for the beetle over time. Two predictions that do not depend on our choice of GCM include a decrease in suitability of the Mississippi Delta region and continued favourability of the southeastern United States.
© 2014 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Self-limiting outbreak of crayfish plague in an Austropotamobius pallipes population of a river basin in the Abruzzi region (central Italy).
Caprioli R, Cargini D, Marcacci M, Cammà C, Giansante C, Ferri N
(2013) Dis Aquat Organ 103: 149-56
MeSH Terms: Animals, Astacoidea, Host-Parasite Interactions, Italy, Oomycetes, Rivers
Show Abstract · Added May 20, 2014
Crayfish plague, caused by the oomycete Aphanomyces astaci, is a serious disease of European freshwater crayfish and has eliminated entire populations in several European countries. In September 2011, mortality was observed among the Austropotamobius pallipes population of a river basin in the Abruzzi region (central Italy), and A. astaci DNA was detected by PCR in dead crayfish. A systematic survey was carried out to evaluate the spread and the effects of the plague in the river basin. The source of the outbreak remained unknown since North American crayfish species, which frequently act as subclinical carriers of the infection, were not detected in the area. The A. pallipes population disappeared from a river stretch of ~1 km, where A. astaci infection was detected in dead crayfish. However, apparently unaffected crayfish were still present upstream of that area as well as in a tributary that joined the brook in the apparently depopulated stretch. A. astaci infection was not detected in dead individuals collected in the upstream area and tributary. A follow-up visit conducted in the following season showed the presence of A. pallipes in the river stretch hit by the plague. In this outbreak, the spread of the infection could have been limited by a low density of the crayfish population and by the geographic conformation of the river basin, which includes a dense network of small tributaries, characterized by high flow velocity and low water temperature. In this particular setting, crayfish plague outbreaks can remain undetected. This underlines the importance of active monitoring programs aimed at the prompt recognition of both episodes of mortality and the presence of non-indigenous crayfish species.
1 Communities
1 Members
0 Resources
6 MeSH Terms
Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.
Martínez-Barnetche J, Gómez-Barreto RE, Ovilla-Muñoz M, Téllez-Sosa J, García López DE, Dinglasan RR, Ubaida Mohien C, MacCallum RM, Redmond SN, Gibbons JG, Rokas A, Machado CA, Cazares-Raga FE, González-Cerón L, Hernández-Martínez S, Rodríguez López MH
(2012) BMC Genomics 13: 207
MeSH Terms: Animals, Anopheles, Chromosome Mapping, Databases, Genetic, Expressed Sequence Tags, Female, Gene Library, Genome, Host-Parasite Interactions, Insect Vectors, Plasmodium, Proteome, Sequence Analysis, DNA, Transcriptome
Show Abstract · Added August 16, 2012
BACKGROUND - Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex.
RESULTS - We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects.
CONCLUSIONS - We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).
1 Communities
0 Members
0 Resources
14 MeSH Terms
Complex effects of temperature on mosquito immune function.
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB
(2012) Proc Biol Sci 279: 3357-66
MeSH Terms: Animals, Anopheles, Cecropins, Host-Parasite Interactions, Immunity, Innate, Insect Vectors, Malaria, Nitric Oxide Synthase, Temperature
Show Abstract · Added February 5, 2016
Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host-parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Functional and evolutionary insights from the genomes of three parasitoid Nasonia species.
Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Nasonia Genome Working Group, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJ, Kitts P, Lynch JA, Murphy T, Oliveira DC, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MM, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Hurst GD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FM, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu LL, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZL, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA
(2010) Science 327: 343-8
MeSH Terms: Animals, Arthropods, Biological Evolution, DNA Methylation, DNA Transposable Elements, Female, Gene Transfer, Horizontal, Genes, Insect, Genetic Speciation, Genetic Variation, Genome, Insect, Host-Parasite Interactions, Insect Proteins, Insect Viruses, Insecta, Male, Molecular Sequence Data, Quantitative Trait Loci, Recombination, Genetic, Sequence Analysis, DNA, Wasp Venoms, Wasps, Wolbachia
Show Abstract · Added February 8, 2016
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism.
Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E
(2008) Proc Natl Acad Sci U S A 105: 14802-7
MeSH Terms: Animals, Base Sequence, Caenorhabditis elegans, Chromosome Mapping, Evolution, Molecular, Gene Duplication, Gene Transfer, Horizontal, Genome, Helminth, Host-Parasite Interactions, Molecular Sequence Data, Multigene Family, Operon, Phylogeny, Plants, Synteny, Tylenchoidea
Show Abstract · Added April 7, 2010
We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel.
Hillyer JF, Barreau C, Vernick KD
(2007) Int J Parasitol 37: 673-81
MeSH Terms: Aedes, Animals, Anopheles, Female, Host-Parasite Interactions, Phagocytosis, Plasmodium berghei, Plasmodium gallinaceum, Salivary Glands, Sporozoites
Show Abstract · Added February 5, 2016
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.
0 Communities
1 Members
0 Resources
10 MeSH Terms