Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 2 of 2

Publication Record

Connections

Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb.
Lancman JJ, Zvenigorodsky N, Gates KP, Zhang D, Solomon K, Humphrey RK, Kuo T, Setiawan L, Verkade H, Chi YI, Jhala US, Wright CV, Stainier DY, Dong PD
(2013) Development 140: 2669-79
MeSH Terms: Animals, Animals, Genetically Modified, Cell Differentiation, Hepatocyte Nuclear Factor 1-beta, Hepatopancreas, Signal Transduction, Stem Cells, Wnt Proteins, Zebrafish, Zebrafish Proteins
Show Abstract · Added March 7, 2014
Although the liver and ventral pancreas are thought to arise from a common multipotent progenitor pool, it is unclear whether these progenitors of the hepatopancreas system are specified by a common genetic mechanism. Efforts to determine the role of Hnf1b and Wnt signaling in this crucial process have been confounded by a combination of factors, including a narrow time frame for hepatopancreas specification, functional redundancy among Wnt ligands, and pleiotropic defects caused by either severe loss of Wnt signaling or Hnf1b function. Using a novel hypomorphic hnf1ba zebrafish mutant that exhibits pancreas hypoplasia, as observed in HNF1B monogenic diabetes, we show that hnf1ba plays essential roles in regulating β-cell number and pancreas specification, distinct from its function in regulating pancreas size and liver specification, respectively. By combining Hnf1ba partial loss of function with conditional loss of Wnt signaling, we uncover a crucial developmental window when these pathways synergize to specify the entire ventrally derived hepatopancreas progenitor population. Furthermore, our in vivo genetic studies demonstrate that hnf1ba generates a permissive domain for Wnt signaling activity in the foregut endoderm. Collectively, our findings provide a new model for HNF1B function, yield insight into pancreas and β-cell development, and suggest a new mechanism for hepatopancreatic specification.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Hepatopancreatic multi-transcript expression patterns in the crayfish Cherax quadricarinatus during the moult cycle.
Yudkovski Y, Shechter A, Chalifa-Caspi V, Auslander M, Ophir R, Dauphin-Villemant C, Waterman M, Sagi A, Tom M
(2007) Insect Mol Biol 16: 661-74
MeSH Terms: Animals, Astacoidea, Base Sequence, Cloning, Molecular, DNA Primers, Ecdysterone, Gene Expression Profiling, Gene Expression Regulation, Developmental, Hepatopancreas, Male, Molecular Sequence Data, Molting, Oligonucleotide Array Sequence Analysis
Show Abstract · Added February 12, 2015
Alterations of hepatopancreatic multi-transcript expression patterns, related to induced moult cycle, were identified in male Cherax quadricarinatus through cDNA microarray hybridizations of hepatopancreatic transcript populations. Moult was induced by X-organ sinus gland extirpation or by repeated injections of 20-hydroxyecdysone. Manipulated males were sacrificed at premoult or early postmoult, and a reference population was sacrificed at intermoult. Differentially expressed genes among the four combinations of two induction methods and two moult stages were identified. Biologically interesting clusters revealing concurrently changing transcript expressions across treatments were selected, characterized by a general shift of expression throughout premoult and early postmoult vs. intermoult, or by different premoult vs. postmoult expressions. A number of genes were differentially expressed in 20-hydroxyecdysone-injected crayfish vs. X-organ sinus gland extirpated males.
0 Communities
1 Members
0 Resources
13 MeSH Terms