, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 16

Publication Record

Connections

Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Wang X, Sterr M, Burtscher I, Chen S, Hieronimus A, Machicao F, Staiger H, Häring HU, Lederer G, Meitinger T, Cernilogar FM, Schotta G, Irmler M, Beckers J, Hrabě de Angelis M, Ray M, Wright CVE, Bakhti M, Lickert H
(2018) Mol Metab 9: 57-68
MeSH Terms: Calcium-Binding Proteins, Cell Differentiation, Cells, Cultured, Chromatin Assembly and Disassembly, Diabetes Mellitus, Type 2, Enhancer Elements, Genetic, Genome-Wide Association Study, Hepatocyte Nuclear Factor 1-beta, Homeodomain Proteins, Humans, Induced Pluripotent Stem Cells, Insulin-Secreting Cells, Intercellular Signaling Peptides and Proteins, Membrane Proteins, Myeloid Ecotropic Viral Integration Site 1 Protein, Polymorphism, Single Nucleotide, Protein Binding, Regulatory Factor X Transcription Factors, Trans-Activators, Transcription Factor 7-Like 2 Protein
Show Abstract · Added February 6, 2018
OBJECTIVE - Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.
METHODS - In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions.
RESULTS - ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in the literature in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand of the Notch receptor DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function, respectively. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes.
CONCLUSIONS - Our data provide stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
1 Communities
0 Members
0 Resources
20 MeSH Terms
HNF1B Loss Exacerbates the Development of Chromophobe Renal Cell Carcinomas.
Sun M, Tong P, Kong W, Dong B, Huang Y, Park IY, Zhou L, Liu XD, Ding Z, Zhang X, Bai S, German P, Powell R, Wang Q, Tong X, Tannir NM, Matin SF, Rathmell WK, Fuller GN, McCutcheon IE, Walker CL, Wang J, Jonasch E
(2017) Cancer Res 77: 5313-5326
MeSH Terms: Aneuploidy, Animals, Apoptosis, Carcinoma, Renal Cell, Cell Cycle, Cell Cycle Proteins, Cell Proliferation, Cells, Cultured, Chromosomal Instability, Embryo, Mammalian, Fibroblasts, Hepatocyte Nuclear Factor 1-beta, Humans, Kidney Neoplasms, Mad2 Proteins, Mice, Protein-Serine-Threonine Kinases
Show Abstract · Added October 30, 2019
Chromophobe renal cell carcinoma (ChRCC) is characterized by major changes in chromosomal copy number (CN). No model is available to precisely elucidate the molecular drivers of this tumor type. HNF1B is a master regulator of gene expression. Here, we report that the transcription factor HNF1B is downregulated in the majority of ChRCC and that the magnitude of loss is unique to ChRCC. We also observed a strong correlation between reduced expression and aneuploidy in ChRCC patients. In murine embryonic fibroblasts or ACHN cells, deficiency reduced expression of the spindle checkpoint proteins MAD2L1 and BUB1B, and the cell-cycle checkpoint proteins RB1 and p27. Furthermore, it altered the chromatin accessibility of , , and genes and triggered aneuploidy development. Analysis of The Cancer Genome Atlas database revealed mutations in 33% of ChRCC where expression was repressed. In clinical specimens, combining loss with mutation produced an association with poor patient prognosis. In cells, combining loss and mutation increased cell proliferation and aneuploidy. Our results show how loss leads to abnormal mitotic protein regulation and induction of aneuploidy. We propose that coordinate loss of and may enhance cellular survival and confer an aggressive phenotype in ChRCC. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Comparative analysis of Napsin A, alpha-methylacyl-coenzyme A racemase (AMACR, P504S), and hepatocyte nuclear factor 1 beta as diagnostic markers of ovarian clear cell carcinoma: an immunohistochemical study of 279 ovarian tumours.
Fadare O, Zhao C, Khabele D, Parkash V, Quick CM, Gwin K, Desouki MM
(2015) Pathology 47: 105-11
MeSH Terms: Adenocarcinoma, Clear Cell, Aspartic Acid Endopeptidases, Biomarkers, Tumor, Diagnosis, Differential, Female, Hepatocyte Nuclear Factor 1-beta, Humans, Immunohistochemistry, Neoplasm Grading, Ovarian Neoplasms, Racemases and Epimerases, Sensitivity and Specificity
Show Abstract · Added February 19, 2015
Napsin A and α-methylacyl-coenzyme A racemase (AMACR, P504S) have recently been described as being frequently expressed in clear cell carcinomas (CCC) of the gynecological tract. The present study was conducted to assess the test performance of these newer markers relative to the more traditional marker, hepatocyte nuclear factor 1β (HNF1β), in a large and histotypically diverse dataset. A total of 279 ovarian tumours in tissue microarrays were immunohistochemically assessed for the expression of Napsin A, AMACR and HNF1β. HNF1β, Napsin A and AMACR were expressed in 92%, 82% and 63% of 65 CCC, 7%, 1% and 1% of 101 serous carcinomas, 37%, 5.3% and 0% of 19 endometrioid carcinomas, 60%, 0% and 0% of 45 mucinous tumours, 100%, 0% and 0% of seven yolk sac tumours, and 0%, 16.7% and 16.7% of six steroid cell tumours NOS, respectively. All other tumours, including 18 adult-type granulosa cell tumours, eight dysgerminomas and nine other miscellaneous tumour types were negative for all three markers. Using a benchmark of ≥1% of tumour cells for positivity and CCC as the diagnostic end-point, the sensitivity, specificity, negative predictive value and positive predictive value of Napsin A expression were 0.82, 0.99, 0.94, and 0.98, respectively (odds ratio 439, p < 0.0001). Respective parameters were 0.92, 0.79, 0.97, and 0.58 (odds ratio 44, p < 0.0001) for HNF1β and 0.63, 0.99, 0.89, and 0.5 (odds ratio 112, p < 0.0001) for AMACR. The combination of any two positive markers, irrespective of the staining pattern of the third, significantly predicted the CCC histotype in every analytic scenario. In summary, HNF1β is highly sensitive but is suboptimally specific in isolation, whereas AMACR is highly specific but is suboptimally sensitive. Napsin A is specific but of intermediate sensitivity. Napsin A, AMACR and HNF1β are all viable markers of CCC that can be deployed as components of larger panels when CCC is a diagnostic consideration.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Painter JN, O'Mara TA, Batra J, Cheng T, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, Healey CS, Kaufmann S, Hillman KM, Walpole C, Moya L, Pollock P, Jones A, Howarth K, Martin L, Gorman M, Hodgson S, National Study of Endometrial Cancer Genetics Group (NSECG), CHIBCHA Consortium, De Polanco MM, Sans M, Carracedo A, Castellvi-Bel S, Rojas-Martinez A, Santos E, Teixeira MR, Carvajal-Carmona L, Shu XO, Long J, Zheng W, Xiang YB, Australian National Endometrial Cancer Study Group (ANECS), Montgomery GW, Webb PM, Scott RJ, McEvoy M, Attia J, Holliday E, Martin NG, Nyholt DR, Henders AK, Fasching PA, Hein A, Beckmann MW, Renner SP, Dörk T, Hillemanns P, Dürst M, Runnebaum I, Lambrechts D, Coenegrachts L, Schrauwen S, Amant F, Winterhoff B, Dowdy SC, Goode EL, Teoman A, Salvesen HB, Trovik J, Njolstad TS, Werner HM, Ashton K, Proietto T, Otton G, Tzortzatos G, Mints M, Tham E, RENDOCAS, Hall P, Czene K, Liu J, Li J, Hopper JL, Southey MC, Australian Ovarian Cancer Study (AOCS), Ekici AB, Ruebner M, Johnson N, Peto J, Burwinkel B, Marme F, Brenner H, Dieffenbach AK, Meindl A, Brauch H, GENICA Network, Lindblom A, Depreeuw J, Moisse M, Chang-Claude J, Rudolph A, Couch FJ, Olson JE, Giles GG, Bruinsma F, Cunningham JM, Fridley BL, Børresen-Dale AL, Kristensen VN, Cox A, Swerdlow AJ, Orr N, Bolla MK, Wang Q, Weber RP, Chen Z, Shah M, French JD, Pharoah PD, Dunning AM, Tomlinson I, Easton DF, Edwards SL, Thompson DJ, Spurdle AB
(2015) Hum Mol Genet 24: 1478-92
MeSH Terms: Alleles, Case-Control Studies, Cell Line, Tumor, Chromosome Mapping, Computational Biology, Databases, Genetic, Endometrial Neoplasms, Epigenesis, Genetic, European Continental Ancestry Group, Female, Genetic Loci, Genetic Variation, Genome-Wide Association Study, Genotype, Haplotypes, Hepatocyte Nuclear Factor 1-beta, Humans, Linkage Disequilibrium, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, RNA, Messenger, Risk Factors
Show Abstract · Added February 22, 2016
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Genome-wide association study of endometrial cancer in E2C2.
De Vivo I, Prescott J, Setiawan VW, Olson SH, Wentzensen N, Australian National Endometrial Cancer Study Group, Attia J, Black A, Brinton L, Chen C, Chen C, Cook LS, Crous-Bou M, Doherty J, Dunning AM, Easton DF, Friedenreich CM, Garcia-Closas M, Gaudet MM, Haiman C, Hankinson SE, Hartge P, Henderson BE, Holliday E, Horn-Ross PL, Hunter DJ, Le Marchand L, Liang X, Lissowska J, Long J, Lu L, Magliocco AM, McEvoy M, O'Mara TA, Orlow I, Painter JN, Pooler L, Rastogi R, Rebbeck TR, Risch H, Sacerdote C, Schumacher F, Scott RJ, Sheng X, Shu XO, Spurdle AB, Thompson D, Vanden Berg D, Weiss NS, Xia L, Xiang YB, Yang HP, Yu H, Zheng W, Chanock S, Kraft P
(2014) Hum Genet 133: 211-24
MeSH Terms: African Americans, Aged, Asian Continental Ancestry Group, Case-Control Studies, Cohort Studies, Endometrial Neoplasms, European Continental Ancestry Group, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Hepatocyte Nuclear Factor 1-beta, Humans, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors, United States
Show Abstract · Added March 20, 2014
Endometrial cancer (EC), a neoplasm of the uterine epithelial lining, is the most common gynecological malignancy in developed countries and the fourth most common cancer among US women. Women with a family history of EC have an increased risk for the disease, suggesting that inherited genetic factors play a role. We conducted a two-stage genome-wide association study of Type I EC. Stage 1 included 5,472 women (2,695 cases and 2,777 controls) of European ancestry from seven studies. We selected independent single-nucleotide polymorphisms (SNPs) that displayed the most significant associations with EC in Stage 1 for replication among 17,948 women (4,382 cases and 13,566 controls) in a multiethnic population (African America, Asian, Latina, Hawaiian and European ancestry), from nine studies. Although no novel variants reached genome-wide significance, we replicated previously identified associations with genetic markers near the HNF1B locus. Our findings suggest that larger studies with specific tumor classification are necessary to identify novel genetic polymorphisms associated with EC susceptibility.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb.
Lancman JJ, Zvenigorodsky N, Gates KP, Zhang D, Solomon K, Humphrey RK, Kuo T, Setiawan L, Verkade H, Chi YI, Jhala US, Wright CV, Stainier DY, Dong PD
(2013) Development 140: 2669-79
MeSH Terms: Animals, Animals, Genetically Modified, Cell Differentiation, Hepatocyte Nuclear Factor 1-beta, Hepatopancreas, Signal Transduction, Stem Cells, Wnt Proteins, Zebrafish, Zebrafish Proteins
Show Abstract · Added March 7, 2014
Although the liver and ventral pancreas are thought to arise from a common multipotent progenitor pool, it is unclear whether these progenitors of the hepatopancreas system are specified by a common genetic mechanism. Efforts to determine the role of Hnf1b and Wnt signaling in this crucial process have been confounded by a combination of factors, including a narrow time frame for hepatopancreas specification, functional redundancy among Wnt ligands, and pleiotropic defects caused by either severe loss of Wnt signaling or Hnf1b function. Using a novel hypomorphic hnf1ba zebrafish mutant that exhibits pancreas hypoplasia, as observed in HNF1B monogenic diabetes, we show that hnf1ba plays essential roles in regulating β-cell number and pancreas specification, distinct from its function in regulating pancreas size and liver specification, respectively. By combining Hnf1ba partial loss of function with conditional loss of Wnt signaling, we uncover a crucial developmental window when these pathways synergize to specify the entire ventrally derived hepatopancreas progenitor population. Furthermore, our in vivo genetic studies demonstrate that hnf1ba generates a permissive domain for Wnt signaling activity in the foregut endoderm. Collectively, our findings provide a new model for HNF1B function, yield insight into pancreas and β-cell development, and suggest a new mechanism for hepatopancreatic specification.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Mind bomb 1 is required for pancreatic β-cell formation.
Horn S, Kobberup S, Jørgensen MC, Kalisz M, Klein T, Kageyama R, Gegg M, Lickert H, Lindner J, Magnuson MA, Kong YY, Serup P, Ahnfelt-Rønne J, Jensen JN
(2012) Proc Natl Acad Sci U S A 109: 7356-61
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Blotting, Western, Cell Lineage, Embryo, Mammalian, Female, Gene Expression Regulation, Developmental, Hepatocyte Nuclear Factor 1-beta, Hepatocyte Nuclear Factor 3-beta, Homeodomain Proteins, Insulin-Secreting Cells, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Mutation, Nerve Tissue Proteins, Nuclear Proteins, Pancreas, Receptors, Notch, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, Time Factors, Transcription Factors, Ubiquitin-Protein Ligases
Show Abstract · Added December 5, 2013
During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1(+)Ptf1a(+) multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1(-)Ptf1a(+) acinar progenitors and proximal Nkx6-1(+)Ptf1a(-) duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1(+)Ptf1a(-) and Hnf1β(+) cells and a corresponding loss of Neurog3(+) endocrine progenitors and β-cells. An accompanying increase in Nkx6-1(-)Ptf1a(+) and amylase(+) cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation.
3 Communities
2 Members
1 Resources
26 MeSH Terms
Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo.
Vanderpool C, Sparks EE, Huppert KA, Gannon M, Means AL, Huppert SS
(2012) Hepatology 55: 233-43
MeSH Terms: Animals, Bile Ducts, Intrahepatic, Cell Lineage, Cholestasis, Gene Expression Regulation, Developmental, Hepatocyte Nuclear Factor 1-beta, Hepatocyte Nuclear Factor 6, Hepatocytes, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Immunoglobulin kappa-Chains, Integrases, Mice, Mice, Inbred Strains, Mice, Knockout, Receptors, Notch, SOX9 Transcription Factor, Signal Transduction
Show Abstract · Added December 5, 2013
UNLABELLED - Notch signaling and hepatocyte nuclear factor-6 (HNF-6) are two genetic factors known to affect lineage commitment in the bipotential hepatoblast progenitor cell (BHPC) population. A genetic interaction involving Notch signaling and HNF-6 in mice has been inferred through separate experiments showing that both affect BHPC specification and bile duct morphogenesis. To define the genetic interaction between HNF-6 and Notch signaling in an in vivo mouse model, we examined the effects of BHPC-specific loss of HNF-6 alone and within the background of BHPC-specific loss of recombination signal binding protein immunoglobulin kappa J (RBP-J), the common DNA-binding partner of all Notch receptors. Isolated loss of HNF-6 in this mouse model fails to demonstrate a phenotypic variance in bile duct development compared to control. However, when HNF-6 loss is combined with RBP-J loss, a phenotype consisting of cholestasis, hepatic necrosis, and fibrosis is observed that is more severe than the phenotype seen with Notch signaling loss alone. This phenotype is associated with significant intrahepatic biliary system abnormalities, including an early decrease in biliary epithelial cells, evolving to ductular proliferation and a decrease in the density of communicating peripheral bile duct branches. In this in vivo model, simultaneous loss of both HNF-6 and RBP-J results in down-regulation of both HNF-1β and Sox9 (sex determining region Y-related HMG box transcription factor 9).
CONCLUSION - HNF-6 and Notch signaling interact in vivo to control expression of downstream mediators essential to the normal development of the intrahepatic biliary system. This study provides a model to investigate genetic interactions of factors important to intrahepatic bile duct development and their effect on cholestatic liver disease phenotypes.
Copyright © 2011 American Association for the Study of Liver Diseases.
3 Communities
2 Members
1 Resources
17 MeSH Terms
A new set of classifications for ductal plate malformations.
Huppert SS
(2011) Hepatology 53: 1795-7
MeSH Terms: Animals, Bile Ducts, Intrahepatic, Biomarkers, Congenital Abnormalities, Disease Models, Animal, Hepatocyte Nuclear Factor 1-beta, Hepatocyte Nuclear Factor 4, Hepatocyte Nuclear Factor 6, Humans, Liver Diseases, Membrane Proteins, Mice, Mice, Knockout, Protein-Serine-Threonine Kinases, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, SOX9 Transcription Factor
Added July 16, 2011
1 Communities
1 Members
0 Resources
17 MeSH Terms
Control of pancreas and liver gene expression by HNF transcription factors.
Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA
(2004) Science 303: 1378-81
MeSH Terms: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Carbohydrate Metabolism, DNA-Binding Proteins, Diabetes Mellitus, Type 2, Gene Expression Profiling, Gene Expression Regulation, Genome, Human, Gluconeogenesis, Hepatocyte Nuclear Factor 1, Hepatocyte Nuclear Factor 1-alpha, Hepatocyte Nuclear Factor 1-beta, Hepatocyte Nuclear Factor 4, Hepatocyte Nuclear Factor 6, Hepatocytes, Homeodomain Proteins, Humans, Islets of Langerhans, Lipid Metabolism, Nuclear Proteins, Oligonucleotide Array Sequence Analysis, Phosphoproteins, Precipitin Tests, Promoter Regions, Genetic, RNA Polymerase II, Trans-Activators, Transcription Factors, Transcription, Genetic
Show Abstract · Added April 19, 2011
The transcriptional regulatory networks that specify and maintain human tissue diversity are largely uncharted. To gain insight into this circuitry, we used chromatin immunoprecipitation combined with promoter microarrays to identify systematically the genes occupied by the transcriptional regulators HNF1alpha, HNF4alpha, and HNF6, together with RNA polymerase II, in human liver and pancreatic islets. We identified tissue-specific regulatory circuits formed by HNF1alpha, HNF4alpha, and HNF6 with other transcription factors, revealing how these factors function as master regulators of hepatocyte and islet transcription. Our results suggest how misregulation of HNF4alpha can contribute to type 2 diabetes.
0 Communities
0 Members
1 Resources
27 MeSH Terms