The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.
If you have any questions or comments, please contact us.
Ibrutinib, a Bruton tyrosine kinase inhibitor, is approved for treatment of various B-cell malignancies. In ibrutinib clinical studies, low-grade haemorrhage was common, whereas major haemorrhage (MH) was infrequent. We analysed the incidence of and risk factors for MH from 15 ibrutinib clinical studies (N = 1768), including 4 randomised controlled trials (RCTs). Rates of any-grade bleeding were similar for single-agent ibrutinib and ibrutinib combinations (39% and 40%). Low-grade bleeding was more common in ibrutinib-treated than comparator-treated patients (35% and 15%), and early low-grade bleeding was not associated with MH. The proportion of MH in RCTs was higher with ibrutinib than comparators (4.4% vs. 2.8%), but after adjusting for longer exposure with ibrutinib (median 13 months vs. 6 months), the incidence of MH was similar (3.2 vs. 3.1 per 1000 person-months). MH led to treatment discontinuation in 1% of all ibrutinib-treated patients. Use of anticoagulants and/or antiplatelets (AC/AP) during the study was common (~50% of patients) and had an increased exposure-adjusted relative risk for MH in both the total ibrutinib-treated population (1.9; 95% confidence interval, 1.2-3.0) and RCT comparator-treated patients (2.4; 95% confidence interval, 1.0-5.6), indicating that ibrutinib may not alter the effect of AC/AP on the risk of MH in B-cell malignancies.
© 2018 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.
The application of machine learning in medicine has been productive in multiple fields, but has not previously been applied to analyze the complexity of organ involvement by chronic graft--host disease. Chronic graft--host disease is classified by an overall composite score as mild, moderate or severe, which may overlook clinically relevant patterns in organ involvement. Here we applied a novel computational approach to chronic graft--host disease with the goal of identifying phenotypic groups based on the subcomponents of the National Institutes of Health Consensus Criteria. Computational analysis revealed seven distinct groups of patients with contrasting clinical risks. The high-risk group had an inferior overall survival compared to the low-risk group (hazard ratio 2.24; 95% confidence interval: 1.36-3.68), an effect that was independent of graft--host disease severity as measured by the National Institutes of Health criteria. To test clinical applicability, knowledge was translated into a simplified clinical prognostic decision tree. Groups identified by the decision tree also stratified outcomes and closely matched those from the original analysis. Patients in the high- and intermediate-risk decision-tree groups had significantly shorter overall survival than those in the low-risk group (hazard ratio 2.79; 95% confidence interval: 1.58-4.91 and hazard ratio 1.78; 95% confidence interval: 1.06-3.01, respectively). Machine learning and other computational analyses may better reveal biomarkers and stratify risk than the current approach based on cumulative severity. This approach could now be explored in other disease models with complex clinical phenotypes. External validation must be completed prior to clinical application. Ultimately, this approach has the potential to reveal distinct pathophysiological mechanisms that may underlie clusters. .
Copyright© 2019 Ferrata Storti Foundation.
Advances in drug discovery have led to the use of effective targeted agents in the treatment of hematologic malignancies. Drugs such as proteasome inhibitors in multiple myeloma and tyrosine kinase inhibitors in chronic myeloid leukemia and non-Hodgkin lymphoma have changed the face of treatment of hematologic malignancies. There are several reports of cardiovascular adverse events related to these newer agents. Both "on-target" and "off-target" effects of these agents can cause organ-specific toxicity. The need for long-term administration for most of these agents requires continued monitoring of toxicity. Moreover, the patient population is older, often over 50 years of age, making them more susceptible to cardiovascular side effects. Additional factors such as prior exposure to anthracyclines often add to this toxicity. In light of their success and widespread use, it is important to recognize and manage the unique side effect profile of targeted agents used in hematologic malignancies. In this article, we review the current data for the incidence of cardiovascular side effects of targeted agents in hematologic malignancies and discuss a preemptive approach towards managing these toxicities.
Alterations in the expression or function of histone deacetylases (HDAC) contribute to the development and progression of hematologic malignancies. Consequently, the development and implementation of HDAC inhibitors has proven to be therapeutically beneficial, particularly for hematologic malignancies. However, the molecular mechanisms by which HDAC inhibition (HDACi) induces tumor cell death remain unresolved. Here, we investigated the effects of HDACi in Myc-driven B-cell lymphoma and five other hematopoietic malignancies. We determined that Myc-mediated transcriptional repression of the miR-15 and let-7 families in malignant cells was relieved upon HDACi, and Myc was required for their upregulation. The miR-15 and let-7 families then targeted and downregulated the antiapoptotic genes Bcl-2 and Bcl-xL, respectively, to induce HDACi-mediated apoptosis. Notably, Myc also transcriptionally upregulated these miRNA in untransformed cells, indicating that this Myc-induced miRNA-mediated apoptotic pathway is suppressed in malignant cells, but becomes reactivated upon HDACi. Taken together, our results reveal a previously unknown mechanism by which Myc induces apoptosis independent of the p53 pathway and as a response to HDACi in malignant hematopoietic cells.
©2015 American Association for Cancer Research.
Advances in hematopoietic cell transplantation (HCT) techniques and supportive care strategies have led to dramatic improvements in relapse mortality in patients with high-risk hematological malignancies. These improvements, however, conversely increase the risk of late-occurring non-cancer competing causes, mostly cardiovascular disease (CVD). HCT recipients have a significantly increased risk of CVD-specific mortality, including elevated incidence of coronary artery disease (CAD), cerebrovascular disease, and heart failure (HF) compared to age-matched counterparts. Accordingly, there is an urgent need to identify techniques for the detection of early CVD in HCT patients to inform early prevention strategies. Aerobic training (AT) is established as the cornerstone of primary and secondary disease prevention in multiple clinical settings, and may confer similar benefits in HCT patients at high-risk of CVD. The potential benefits of AT either before, immediately after, or in the months/years following HCT have received limited attention. Here, we discuss the risk and extent of CVD in adult HCT patients, highlight novel tools for early detection of CVD, and review existing evidence in oncology and non-oncology populations supporting the efficacy of AT to attenuate HCT-induced CVD. This knowledge can be utilized to optimize treatment, while minimizing CVD risk in individuals with hematological malignancies undergoing HCT.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
BACKGROUND - Malignant pleural effusion is a common complication of advanced malignancies. Indwelling tunneled pleural catheter (IPC) placement provides effective palliation but can be associated with complications, including infection. In particular, hematologic malignancy and the associated immunosuppressive treatment regimens may increase infectious complications. This study aimed to review outcomes in patients with hematologic malignancy undergoing IPC placement.
METHODS - A retrospective multicenter study of IPCs placed in patients with hematologic malignancy from January 2009 to December 2013 was performed. Inclusion criteria were recurrent, symptomatic pleural effusion and an underlying diagnosis of hematologic malignancy. Records were reviewed for patient demographics, operative reports, and pathology, cytology, and microbiology reports.
RESULTS - Ninety-one patients (mean ± SD age, 65.4 ± 15.4 years) were identified from eight institutions. The mean × SD in situ dwell time of all catheters was 89.9 ± 127.1 days (total, 8,160 catheter-days). Seven infectious complications were identified, all of the pleural space. All patients were admitted to the hospital for treatment, with four requiring additional pleural procedures. Two patients died of septic shock related to pleural infection.
CONCLUSIONS - We present, to our knowledge, the largest study examining clinical outcomes related to IPC placement in patients with hematologic malignancy. An overall 7.7% infection risk and 2.2% mortality were identified, similar to previously reported studies, despite the significant immunosuppression and pancytopenia often present in this population. IPC placement appears to remain a reasonable clinical option for patients with recurrent pleural effusions related to hematologic malignancy.
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
We conducted a nested case-control study within a cohort of 6244 patients to assess risk factors for avascular necrosis (AVN) of bone in children and adolescents after allogeneic transplantation. Eligible patients were ≤21 years of age, received their first allogeneic transplant between 1990 and 2008 in the United States, and had survived ≥ 6 months from transplantation. Overall, 160 patients with AVN and 478 control subjects matched by year of transplant, length of follow-up and transplant center were identified. Patients and control subjects were confirmed via central review of radiology, pathology, and/or surgical procedure reports. Median time from transplant to diagnosis of AVN was 14 months. On conditional logistic regression, increasing age at transplant (≥5 years), female gender, and chronic graft-versus-host disease (GVHD) were significantly associated with increased risks of AVN. Compared with patients receiving myeloablative regimens for malignant diseases, lower risks of AVN were seen in patients with nonmalignant diseases and those who had received reduced-intensity conditioning regimens for malignant diseases. Children at high risk for AVN include those within the age group where rapid bone growth occurs as well as those who experience exposure to myeloablative conditioning regimens and immunosuppression after hematopoietic cell transplantation for the treatment of GVHD. More research is needed to determine whether screening strategies specifically for patients at high risk for developing AVN with early interventions may mitigate the morbidity associated with this complication.
Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
The 2005 National Institutes of Health (NIH) Consensus Conference recommended assessment of lung function in patients with chronic graft-versus-host disease (GVHD) by both pulmonary function tests (PFTs) and assessment of pulmonary symptoms. We tested whether pulmonary measures were associated with nonrelapse mortality (NRM), overall survival (OS), and patient-reported outcomes (PRO). Clinician and patient-reported data were collected serially in a prospective, multicenter, observational study. Available PFT data were abstracted. Cox regression models were fit for outcomes using a time-varying covariate model for lung function measures and adjusting for patient and transplantation characteristics and nonlung chronic GVHD severity. A total of 1591 visits (496 patients) were used in this analysis. The NIH symptom-based lung score was associated with NRM (P = .02), OS (P = .02), patient-reported symptoms (P < .001) and functional status (P < .001). Worsening of NIH symptom-based lung score over time was associated with higher NRM and lower survival. All other measures were not associated with OS or NRM; although, some were associated with patient-reported lung symptoms. In conclusion, the NIH symptom-based lung symptom score of 0 to 3 is associated with NRM, OS, and PRO measures in patients with chronic GVHD. Worsening of the NIH symptom-based lung score was associated with increased mortality.
Copyright © 2014 American Society for Blood and Marrow Transplantation. All rights reserved.
OBJECTIVES - To address the overuse of testing that complicates patient care, diminishes quality, and increases costs by implementing the diagnostic management team, a multidisciplinary system for the development and deployment of diagnostic testing guidelines for hematologic malignancies.
METHODS - The team created evidence-based standard ordering protocols (SOPs) for cytogenetic and molecular testing that were applied by pathologists to bone marrow biopsy specimens on adult patients. Testing on 780 biopsy specimens performed during the six months before SOP implementation was compared with 1,806 biopsy specimens performed during the subsequent 12 months.
RESULTS - After implementation, there were significant decreases in tests discordant with SOPs, omitted tests, and the estimated cost of testing to payers. The fraction of positive tests increased. Clinicians reported acceptance of the new procedures and perceived time savings.
CONCLUSIONS - This process is a model for optimizing complex and personalized diagnostic testing.