Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 382

Publication Record

Connections

Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT
(2018) Elife 7:
MeSH Terms: Actin Cytoskeleton, Actins, Cell Line, Cell Line, Tumor, HeLa Cells, Humans, Microfilament Proteins, Microscopy, Confocal, Molecular Motor Proteins, Muscle Fibers, Skeletal, Myocytes, Cardiac, Myosin Heavy Chains, Nonmuscle Myosin Type IIB, RNA Interference, Sarcomeres, Stress Fibers
Show Abstract · Added March 27, 2019
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
© 2018, Fenix et al.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL
(2018) Anal Chem 90: 8905-8911
MeSH Terms: Algorithms, Chromatography, Liquid, Databases, Protein, Escherichia coli, Escherichia coli Proteins, HeLa Cells, High-Throughput Screening Assays, Humans, Peptides, Proteome, Proteomics, Software, Tandem Mass Spectrometry, Workflow
Show Abstract · Added August 27, 2018
State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Temporal self-regulation of transposition through host-independent transposase rodlet formation.
Woodard LE, Downes LM, Lee YC, Kaja A, Terefe ES, Wilson MH
(2017) Nucleic Acids Res 45: 353-366
MeSH Terms: Animals, DNA Transposable Elements, Female, Gene Expression Regulation, Genes, Reporter, HEK293 Cells, HeLa Cells, Humans, Insect Proteins, Luciferases, Male, Mice, Optical Imaging, Time-Lapse Imaging, Transposases, Tribolium
Show Abstract · Added December 8, 2017
Transposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneum formed filamentous structures, or rodlets, in human tissue culture cells, after gene transfer to adult mice, and ex vivo in cell-free conditions, indicating that host co-factors or cellular structures were not required for rodlet formation. Time-lapsed imaging of GFP-laced rodlets in human cells revealed that they formed quickly in a dynamic process involving fusion and fission. We delayed the availability of the transposon DNA and found that transposition declined after transposase concentrations became high enough for visible transposase rodlets to appear. In combination with earlier findings for maize Ac elements, these results give insight into transposase overproduction inhibition by demonstrating that the appearance of transposase protein structures and the end of active transposition are simultaneous, an effect with implications for genetic engineering and horizontal gene transfer.
Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca sensing.
Yang J, Cumberbatch D, Centanni S, Shi SQ, Winder D, Webb D, Johnson CH
(2016) Nat Commun 7: 13268
MeSH Terms: Animals, Batrachoidiformes, Calcium, Fluorescence Resonance Energy Transfer, HEK293 Cells, HeLa Cells, Humans, Luciferases, Luminescence, Luminescent Measurements, Microscopy, Fluorescence, Optogenetics
Show Abstract · Added March 26, 2019
Optogenetic techniques allow intracellular manipulation of Ca by illumination of light-absorbing probe molecules such as channelrhodopsins and melanopsins. The consequences of optogenetic stimulation would optimally be recorded by non-invasive optical methods. However, most current optical methods for monitoring Ca levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence. Using a new bright luciferase, we here develop a genetically encoded Ca sensor that is ratiometric by virtue of bioluminescence resonance energy transfer (BRET). This sensor has a large dynamic range and partners optimally with optogenetic probes. Ca fluxes that are elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channelrhodopsin are quantified and imaged with the BRET Ca sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.
0 Communities
1 Members
0 Resources
MeSH Terms
Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance.
Lee HH, Leake BF, Kim RB, Ho RH
(2017) Mol Pharmacol 91: 14-24
MeSH Terms: ATP Binding Cassette Transporter, Subfamily B, Member 1, Animals, Biological Transport, Cell Membrane, Dogs, Doxorubicin, HeLa Cells, Humans, Kinetics, Liver, Liver-Specific Organic Anion Transporter 1, Madin Darby Canine Kidney Cells, Male, Mice, Models, Biological, Mutant Proteins, Organic Anion Transporters, Organic Anion Transporters, Sodium-Independent, Organic Cation Transport Proteins, Rats, Transfection
Show Abstract · Added November 10, 2016
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2 mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Epithelial Coculture and l-Lactate Promote Growth of Helicobacter cinaedi under H2-Free Aerobic Conditions.
Schmitz JE, Taniguchi T, Misawa N, Cover TL
(2016) Appl Environ Microbiol 82: 6701-6714
MeSH Terms: Aerobiosis, Caco-2 Cells, Coculture Techniques, Epithelial Cells, HeLa Cells, Helicobacter, Helicobacter Infections, Humans, Hydrogen, Lactic Acid
Show Abstract · Added April 9, 2017
Helicobacter cinaedi is an emerging opportunistic pathogen associated with infections of diverse anatomic sites. Nevertheless, the species demonstrates fastidious axenic growth; it has been described as requiring a microaerobic atmosphere, along with a strong preference for supplemental H gas. In this context, we examined the hypothesis that in vitro growth of H. cinaedi could be enhanced by coculture with human epithelial cells. When inoculated (in Ham's F12 medium) over Caco-2 monolayers, the type strain (ATCC BAA-847) gained the ability to proliferate under H-free aerobic conditions. Identical results were observed during coculture with several other monolayer types (LS-174T, AGS, and HeLa). Under chemically defined conditions, 40 amino acids and carboxylates were screened for their effect on the organism's atmospheric requirements. Several molecules promoted H-free aerobic proliferation, although it occurred most prominently with millimolar concentrations of l-lactate. The growth response of H. cinaedi to Caco-2 cells and l-lactate was confirmed with a collection of 12 human-derived clinical strains. mRNA sequencing was next performed on the type strain under various growth conditions. In addition to providing a whole-transcriptome profile of H. cinaedi, this analysis demonstrated strong constitutive expression of the l-lactate utilization locus, as well as differential transcription of terminal respiratory proteins as a function of Caco-2 coculture and l-lactate supplementation. Overall, these findings challenge traditional views of H. cinaedi as an obligate microaerophile.
IMPORTANCE - H. cinaedi is an increasingly recognized pathogen in people with compromised immune systems. Atypical among other members of its bacterial class, H. cinaedi has been associated with infections of diverse anatomic sites. Growing H. cineadi in the laboratory is quite difficult, due in large part to the need for a specialized atmosphere. The suboptimal growth of H. cinaedi is an obstacle to clinical diagnosis, and it also limits investigation into the organism's biology. The current work shows that H. cinaedi has more flexible atmospheric requirements in the presence of host cells and a common host-derived molecule. This nutritional interplay raises new questions about how the organism behaves during human infections and provides insights for how to optimize its laboratory cultivation.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Focal adhesions control cleavage furrow shape and spindle tilt during mitosis.
Taneja N, Fenix AM, Rathbun L, Millis BA, Tyska MJ, Hehnly H, Burnette DT
(2016) Sci Rep 6: 29846
MeSH Terms: Animals, Cell Differentiation, Cell Shape, Centrosome, Dogs, Focal Adhesion Protein-Tyrosine Kinases, Focal Adhesions, HeLa Cells, Humans, Madin Darby Canine Kidney Cells, Mitosis, Spindle Apparatus, Vinculin
Show Abstract · Added April 7, 2017
The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells-MDCK-within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.
1 Communities
2 Members
0 Resources
13 MeSH Terms
A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain.
González-Rivera C, Campbell AM, Rutherford SA, Pyburn TM, Foegeding NJ, Barke TL, Spiller BW, McClain MS, Ohi MD, Lacy DB, Cover TL
(2016) Infect Immun 84: 2662-70
MeSH Terms: Bacterial Proteins, Bacterial Toxins, Cell Line, Tumor, HeLa Cells, Helicobacter pylori, Humans, Ion Channels, Microscopy, Electron, Mutation, Protein Domains
Show Abstract · Added September 29, 2016
Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly β-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the β-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the β-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
4 Members
0 Resources
10 MeSH Terms
Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin.
Pyburn TM, Foegeding NJ, González-Rivera C, McDonald NA, Gould KL, Cover TL, Ohi MD
(2016) Mol Microbiol 102: 22-36
MeSH Terms: Bacterial Proteins, Cytotoxins, HeLa Cells, Helicobacter pylori, Humans, Lipid Bilayers, Membrane Proteins, Protein Conformation, Protein Domains, Structure-Activity Relationship, Vacuoles
Show Abstract · Added September 29, 2016
Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.
© 2016 John Wiley & Sons Ltd.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Quantitative assessment of fluorescent proteins.
Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, de Gruiter HM, Kremers GJ, Davidson MW, Ustione A, Piston DW
(2016) Nat Methods 13: 557-62
MeSH Terms: Fluorescence, HeLa Cells, Humans, Luminescent Proteins, Microscopy, Fluorescence, Recombinant Fusion Proteins, Spectrometry, Fluorescence
Show Abstract · Added May 5, 2017
The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.
0 Communities
1 Members
0 Resources
7 MeSH Terms