Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 389

Publication Record

Connections

A missense mutation in SLC6A1 associated with Lennox-Gastaut syndrome impairs GABA transporter 1 protein trafficking and function.
Cai K, Wang J, Eissman J, Wang J, Nwosu G, Shen W, Liang HC, Li XJ, Zhu HX, Yi YH, Song J, Xu D, Delpire E, Liao WP, Shi YW, Kang JQ
(2019) Exp Neurol 320: 112973
MeSH Terms: Adolescent, Animals, GABA Plasma Membrane Transport Proteins, HEK293 Cells, HeLa Cells, Humans, Lennox Gastaut Syndrome, Male, Mutation, Missense, Pedigree, Protein Transport, Rats
Show Abstract · Added March 18, 2020
BACKGROUND - Mutations in SLC6A1 have been associated mainly with myoclonic atonic epilepsy (MAE) and intellectual disability. We identified a novel missense mutation in a patient with Lennox-Gastaut syndrome (LGS) characterized by severe seizures and developmental delay.
METHODS - Exome Sequencing was performed in an epilepsy patient cohort. The impact of the mutation was evaluated by H γ-aminobutyric acid (GABA) uptake, structural modeling, live cell microscopy, cell surface biotinylation and a high-throughput assay flow cytometry in both neurons and non neuronal cells.
RESULTS - We discovered a heterozygous missense mutation (c700G to A [pG234S) in the SLC6A1 encoding GABA transporter 1 (GAT-1). Structural modeling suggests the mutation destabilizes the global protein conformation. With transient expression of enhanced yellow fluorescence protein (YFP) tagged rat GAT-1 cDNAs, we demonstrated that the mutant GAT-1(G234S) transporter had reduced total protein expression in both rat cortical neurons and HEK 293 T cells. With a high-throughput flow cytometry assay and live cell surface biotinylation, we demonstrated that the mutant GAT-1(G234S) had reduced cell surface expression. H radioactive labeling GABA uptake assay in HeLa cells indicated a reduced function of the mutant GAT-1(G234S).
CONCLUSIONS - This mutation caused instability of the mutant transporter protein, which resulted in reduced cell surface and total protein levels. The mutation also caused reduced GABA uptake in addition to reduced protein expression, leading to reduced GABA clearance, and altered GABAergic signaling in the brain. The impaired trafficking and reduced GABA uptake function may explain the epilepsy phenotype in the patient.
Copyright © 2019. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Chlorocebus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles.
Jiu Y, Kumari R, Fenix AM, Schaible N, Liu X, Varjosalo M, Krishnan R, Burnette DT, Lappalainen P
(2019) Curr Biol 29: 81-92.e5
MeSH Terms: Actomyosin, Cell Line, Tumor, HeLa Cells, Humans, Muscle Contraction, Myosin Type II, Myosins, Stress Fibers, Tumor Suppressor Proteins
Show Abstract · Added March 27, 2019
Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.
Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT
(2018) Elife 7:
MeSH Terms: Actin Cytoskeleton, Actins, Cell Line, Cell Line, Tumor, Formins, HeLa Cells, Humans, Microfilament Proteins, Microscopy, Confocal, Molecular Motor Proteins, Muscle Fibers, Skeletal, Myocytes, Cardiac, Myosin Heavy Chains, Nonmuscle Myosin Type IIB, RNA Interference, Sarcomeres, Stress Fibers
Show Abstract · Added March 27, 2019
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
© 2018, Fenix et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Microtubule minus-end aster organization is driven by processive HSET-tubulin clusters.
Norris SR, Jung S, Singh P, Strothman CE, Erwin AL, Ohi MD, Zanic M, Ohi R
(2018) Nat Commun 9: 2659
MeSH Terms: Animals, Cell Tracking, Green Fluorescent Proteins, HeLa Cells, Humans, Kinesin, Microscopy, Fluorescence, Microtubules, Molecular Motor Proteins, Protein Binding, Time-Lapse Imaging, Tubulin
Show Abstract · Added March 3, 2020
Higher-order structures of the microtubule (MT) cytoskeleton are comprised of two architectures: bundles and asters. Although both architectures are critical for cellular function, the molecular pathways that drive aster formation are poorly understood. Here, we study aster formation by human minus-end-directed kinesin-14 (HSET/KIFC1). We show that HSET is incapable of forming asters from preformed, nongrowing MTs, but rapidly forms MT asters in the presence of soluble (non-MT) tubulin. HSET binds soluble (non-MT) tubulin via its N-terminal tail domain to form heterogeneous HSET-tubulin clusters containing multiple motors. Cluster formation induces motor processivity and rescues the formation of asters from nongrowing MTs. We then show that excess soluble (non-MT) tubulin stimulates aster formation in HeLa cells overexpressing HSET during mitosis. We propose a model where HSET can toggle between MT bundle and aster formation in a manner governed by the availability of soluble (non-MT) tubulin.
0 Communities
1 Members
0 Resources
MeSH Terms
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL
(2018) Anal Chem 90: 8905-8911
MeSH Terms: Algorithms, Chromatography, Liquid, Databases, Protein, Escherichia coli, Escherichia coli Proteins, HeLa Cells, High-Throughput Screening Assays, Humans, Peptides, Proteome, Proteomics, Software, Tandem Mass Spectrometry, Workflow
Show Abstract · Added August 27, 2018
State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.
0 Communities
2 Members
0 Resources
14 MeSH Terms
A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links.
Andrews AM, McCartney HJ, Errington TM, D'Andrea AD, Macara IG
(2018) Nat Commun 9: 2592
MeSH Terms: Animals, DNA Damage, DNA Helicases, DNA Repair, Enzyme Assays, Exodeoxyribonucleases, Fanconi Anemia Complementation Group D2 Protein, Female, Fibroblasts, Gene Knockdown Techniques, Gene Knockout Techniques, HEK293 Cells, HeLa Cells, Humans, Male, Mice, Mice, Knockout, RNA Helicases, RNA, Small Interfering, Recombinant Proteins, Signal Transduction, Trans-Activators
Show Abstract · Added August 17, 2020
Interstrand DNA cross-links (ICLs) block both replication and transcription, and are commonly repaired by the Fanconi anemia (FA) pathway. However, FA-independent repair mechanisms of ICLs remain poorly understood. Here we report a previously uncharacterized protein, SAN1, as a 5' exonuclease that acts independently of the FA pathway in response to ICLs. Deletion of SAN1 in HeLa cells and mouse embryonic fibroblasts causes sensitivity to ICLs, which is prevented by re-expression of wild type but not nuclease-dead SAN1. SAN1 deletion causes DNA damage and radial chromosome formation following treatment with Mitomycin C, phenocopying defects in the FA pathway. However, SAN1 deletion is not epistatic with FANCD2, a core FA pathway component. Unexpectedly, SAN1 binds to Senataxin (SETX), an RNA/DNA helicase that resolves R-loops. SAN1-SETX binding is increased by ICLs, and is required to prevent cross-link sensitivity. We propose that SAN1 functions with SETX in a pathway necessary for resistance to ICLs.
0 Communities
0 Members
0 Resources
MeSH Terms
Temporal self-regulation of transposition through host-independent transposase rodlet formation.
Woodard LE, Downes LM, Lee YC, Kaja A, Terefe ES, Wilson MH
(2017) Nucleic Acids Res 45: 353-366
MeSH Terms: Animals, DNA Transposable Elements, Female, Gene Expression Regulation, Genes, Reporter, HEK293 Cells, HeLa Cells, Humans, Insect Proteins, Luciferases, Male, Mice, Optical Imaging, Time-Lapse Imaging, Transposases, Tribolium
Show Abstract · Added December 8, 2017
Transposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneum formed filamentous structures, or rodlets, in human tissue culture cells, after gene transfer to adult mice, and ex vivo in cell-free conditions, indicating that host co-factors or cellular structures were not required for rodlet formation. Time-lapsed imaging of GFP-laced rodlets in human cells revealed that they formed quickly in a dynamic process involving fusion and fission. We delayed the availability of the transposon DNA and found that transposition declined after transposase concentrations became high enough for visible transposase rodlets to appear. In combination with earlier findings for maize Ac elements, these results give insight into transposase overproduction inhibition by demonstrating that the appearance of transposase protein structures and the end of active transposition are simultaneous, an effect with implications for genetic engineering and horizontal gene transfer.
Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca sensing.
Yang J, Cumberbatch D, Centanni S, Shi SQ, Winder D, Webb D, Johnson CH
(2016) Nat Commun 7: 13268
MeSH Terms: Animals, Batrachoidiformes, Calcium, Fluorescence Resonance Energy Transfer, HEK293 Cells, HeLa Cells, Humans, Luciferases, Luminescence, Luminescent Measurements, Microscopy, Fluorescence, Optogenetics
Show Abstract · Added March 26, 2019
Optogenetic techniques allow intracellular manipulation of Ca by illumination of light-absorbing probe molecules such as channelrhodopsins and melanopsins. The consequences of optogenetic stimulation would optimally be recorded by non-invasive optical methods. However, most current optical methods for monitoring Ca levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence. Using a new bright luciferase, we here develop a genetically encoded Ca sensor that is ratiometric by virtue of bioluminescence resonance energy transfer (BRET). This sensor has a large dynamic range and partners optimally with optogenetic probes. Ca fluxes that are elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channelrhodopsin are quantified and imaged with the BRET Ca sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.
0 Communities
1 Members
0 Resources
MeSH Terms
Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance.
Lee HH, Leake BF, Kim RB, Ho RH
(2017) Mol Pharmacol 91: 14-24
MeSH Terms: ATP Binding Cassette Transporter, Subfamily B, Member 1, Animals, Biological Transport, Cell Membrane, Dogs, Doxorubicin, HeLa Cells, Humans, Kinetics, Liver, Liver-Specific Organic Anion Transporter 1, Madin Darby Canine Kidney Cells, Male, Mice, Models, Biological, Mutant Proteins, Organic Anion Transporters, Organic Anion Transporters, Sodium-Independent, Organic Cation Transport Proteins, Rats, Transfection
Show Abstract · Added November 10, 2016
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2 mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
21 MeSH Terms