Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 3 of 3

Publication Record

Connections

A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex.
Khuansuwan S, Clanton JA, Dean BJ, Patton JG, Gamse JT
(2016) Development 143: 2641-50
MeSH Terms: Animals, Body Patterning, Cell Count, Cell Lineage, Cell Movement, Gene Dosage, Gene Expression Regulation, Developmental, Gene Regulatory Networks, Habenula, Larva, Mosaicism, Mutation, Neurons, Pineal Gland, Retinal Rod Photoreceptor Cells, Transcription Factors, Zebrafish, Zebrafish Proteins
Show Abstract · Added August 4, 2017
The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors.
© 2016. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Kctd12 and Ulk2 partner to regulate dendritogenesis and behavior in the habenular nuclei.
Lee S, Page-McCaw P, Gamse JT
(2014) PLoS One 9: e110280
MeSH Terms: Animals, Anxiety, Behavior, Animal, Cation Transport Proteins, Dendrites, Environment, Gene Knockdown Techniques, Habenula, Nerve Tissue Proteins, Protein Structure, Tertiary, Protein-Serine-Threonine Kinases, Zebrafish, Zebrafish Proteins
Show Abstract · Added January 20, 2015
The habenular nuclei of the limbic system regulate responses, such as anxiety, to aversive stimuli in the environment. The habenulae receive inputs from the telencephalon via elaborate dendrites that form in the center of the nuclei. The kinase Ulk2 positively regulates dendritogenesis on habenular neurons, and in turn is negatively regulated by the cytoplasmic protein Kctd12. Given that the habenulae are a nexus in the aversive response circuit, we suspected that incomplete habenular dendritogenesis would have profound implications for behavior. We find that Ulk2, which interacts with Kctd12 proteins via a small proline-serine rich domain, promotes branching and elaboration of dendrites. Loss of Kctd12 results in increased branching/elaboration and decreased anxiety. We conclude that fine-tuning of habenular dendritogenesis during development is essential for appropriate behavioral responses to negative stimuli.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development.
Wu SY, de Borsetti NH, Bain EJ, Bulow CR, Gamse JT
(2014) Dev Biol 385: 13-22
MeSH Terms: Animals, Cell Differentiation, Epithalamus, Fibroblast Growth Factors, Gene Expression Regulation, Developmental, Habenula, Mediator Complex, Neural Stem Cells, Pineal Gland, Retinal Cone Photoreceptor Cells, Retinal Rod Photoreceptor Cells, Signal Transduction, T-Box Domain Proteins, Transcription, Genetic, Transcriptional Activation, Zebrafish, Zebrafish Proteins
Show Abstract · Added July 21, 2014
In the developing brain, the production of neurons from multipotent precursors must be carefully regulated in order to generate the appropriate numbers of various differentiated neuronal types. Inductive signals from extrinsic elements such as growth factors need to be integrated with timely expression of intrinsic elements such as transcription factors that define the competence of the cell. The transcriptional Mediator complex offers a mechanism to coordinate the timing and levels of intrinsic and extrinsic influences by acting as a rapid molecular switch for transcription of poised RNA pol II. The epithalamus is a highly conserved region of the vertebrate brain that differentiates early and rapidly in the zebrafish. It includes the pineal and parapineal organs and the habenular nuclei. Mutation of the Mediator complex subunit Med12 impairs the specification of habenular and parapineal neurons and causes a loss of differentiation in pineal neurons and photoreceptors. Although FGF ligands and transcription factors for parapineal and photoreceptor development are still expressed in the pineal complex of med12 mutants, FGF signaling is impaired and transcription factor expression is reduced and/or delayed. We find that the timely expression of one of these transcription factors, tbx2b, is controlled by Med12 and is vital for parapineal specification. We propose that the Mediator complex is responsible for subtle but significant changes in transcriptional timing and amplitude that are essential for coordinating the development of neurons in the epithalamus.
© 2013 Published by Elsevier Inc.
1 Communities
0 Members
0 Resources
17 MeSH Terms