, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 23

Publication Record

Connections

Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery.
Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR
(2019) Gastroenterology 156: 1041-1051.e4
MeSH Terms: Anastomosis, Surgical, Animals, Anticholesteremic Agents, Bariatric Surgery, Bile Acids and Salts, Blood Glucose, Cholestyramine Resin, Diet, High-Fat, Gallbladder, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Glucose Tolerance Test, Ileum, Insulin Resistance, Intestines, Lymph, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptors, Cytoplasmic and Nuclear, Receptors, G-Protein-Coupled, Signal Transduction, Verrucomicrobia, Weight Loss
Show Abstract · Added January 4, 2019
BACKGROUND & AIMS - Bile diversion to the ileum (GB-IL) has strikingly similar metabolic and satiating effects to Roux-en-Y gastric bypass (RYGB) in rodent obesity models. The metabolic benefits of these procedures are thought to be mediated by increased bile acids, although parallel changes in body weight and other confounding variables limit this interpretation.
METHODS - Global G protein-coupled bile acid receptor-1 null (Tgr5) and intestinal-specific farnesoid X receptor null (Fxr) mice on high-fat diet as well as wild-type C57BL/6 and glucagon-like polypeptide 1 receptor deficient (Glp-1r) mice on chow diet were characterized following GB-IL.
RESULTS - GB-IL induced weight loss and improved oral glucose tolerance in Tgr5, but not Fxr mice fed a high-fat diet, suggesting a role for intestinal Fxr. GB-IL in wild-type, chow-fed mice prompted weight-independent improvements in glycemia and glucose tolerance secondary to augmented insulin responsiveness. Improvements were concomitant with increased levels of lymphatic GLP-1 in the fasted state and increased levels of intestinal Akkermansia muciniphila. Improvements in fasting glycemia after GB-IL were mitigated with exendin-9, a GLP-1 receptor antagonist, or cholestyramine, a bile acid sequestrant. The glucoregulatory effects of GB-IL were lost in whole-body Glp-1r mice.
CONCLUSIONS - Bile diversion to the ileum improves glucose homeostasis via an intestinal Fxr-Glp-1 axis. Altered intestinal bile acid availability, independent of weight loss, and intestinal Akkermansia muciniphila appear to mediate the metabolic changes observed after bariatric surgery and might be manipulated for treatment of obesity and diabetes.
Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo.
Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth MH, Stier MT, Zhou W, Newcomb DC, Ware LB, Stanwood GD, Galli A, Boyd KL, Niswender KD, Peebles RS
(2018) J Allergy Clin Immunol 142: 1515-1528.e8
MeSH Terms: Allergens, Alternaria, Animals, Asthma, Cytokines, Dermatophagoides pteronyssinus, Eosinophilia, Female, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Immunity, Innate, Interleukin-33, Lung, Lymphocytes, Mice, Inbred BALB C, Mice, Transgenic, Mucus, Signal Transduction
Show Abstract · Added April 10, 2018
BACKGROUND - IL-33 is one of the most consistently associated gene candidates for asthma identified by using a genome-wide association study. Studies in mice and in human cells have confirmed the importance of IL-33 in inducing type 2 cytokine production from both group 2 innate lymphoid cells (ILC2s) and T2 cells. However, there are no pharmacologic agents known to inhibit IL-33 release from airway cells.
OBJECTIVE - We sought to determine the effect of glucagon-like peptide 1 receptor (GLP-1R) signaling on aeroallergen-induced airway IL-33 production and release and on innate type 2 airway inflammation.
METHODS - BALB/c mice were challenged intranasally with Alternaria extract for 4 consecutive days. GLP-1R agonist or vehicle was administered starting either 2 days before the first Alternaria extract challenge or 1 day after the first Alternaria extract challenge.
RESULTS - GLP-1R agonist treatment starting 2 days before the first Alternaria extract challenge decreased IL-33 release in the bronchoalveolar lavage fluid and dual oxidase 1 (Duox1) mRNA expression 1 hour after the first Alternaria extract challenge and IL-33 expression in lung epithelial cells 24 hours after the last Alternaria extract challenge. Furthermore, GLP-1R agonist significantly decreased the number of ILC2s expressing IL-5 and IL-13, lung protein expression of type 2 cytokines and chemokines, the number of perivascular eosinophils, mucus production, and airway responsiveness compared with vehicle treatment. GLP-1R agonist treatment starting 1 day after the first Alternaria extract challenge also significantly decreased eosinophilia and type 2 cytokine and chemokine expression in the airway after 4 days of Alternaria extract challenge.
CONCLUSION - These results reveal that GLP-1R signaling might be a therapy to reduce IL-33 release and inhibit the ILC2 response to protease-containing aeroallergens, such as Alternaria.
Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling.
Dai C, Hang Y, Shostak A, Poffenberger G, Hart N, Prasad N, Phillips N, Levy SE, Greiner DL, Shultz LD, Bottino R, Kim SK, Powers AC
(2017) J Clin Invest 127: 3835-3844
MeSH Terms: Adult, Aging, Animals, Calcineurin, Cyclin A1, Exenatide, Female, Forkhead Box Protein M1, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Inbred NOD, Middle Aged, NFATC Transcription Factors, Peptides, Signal Transduction, Venoms
Show Abstract · Added March 29, 2020
Inadequate pancreatic β cell function underlies type 1 and type 2 diabetes mellitus. Strategies to expand functional cells have focused on discovering and controlling mechanisms that limit the proliferation of human β cells. Here, we developed an engraftment strategy to examine age-associated human islet cell replication competence and reveal mechanisms underlying age-dependent decline of β cell proliferation in human islets. We found that exendin-4 (Ex-4), an agonist of the glucagon-like peptide 1 receptor (GLP-1R), stimulates human β cell proliferation in juvenile but not adult islets. This age-dependent responsiveness does not reflect loss of GLP-1R signaling in adult islets, since Ex-4 treatment stimulated insulin secretion by both juvenile and adult human β cells. We show that the mitogenic effect of Ex-4 requires calcineurin/nuclear factor of activated T cells (NFAT) signaling. In juvenile islets, Ex-4 induced expression of calcineurin/NFAT signaling components as well as target genes for proliferation-promoting factors, including NFATC1, FOXM1, and CCNA1. By contrast, expression of these factors in adult islet β cells was not affected by Ex-4 exposure. These studies reveal age-dependent signaling mechanisms regulating human β cell proliferation, and identify elements that could be adapted for therapeutic expansion of human β cells.
0 Communities
1 Members
0 Resources
MeSH Terms
The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity.
Burmeister MA, Brown JD, Ayala JE, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE
(2017) Am J Physiol Endocrinol Metab 313: E651-E662
MeSH Terms: Acetyl-CoA Carboxylase, Adenylate Kinase, Animals, Body Composition, CHO Cells, Cricetulus, Dose-Response Relationship, Drug, Eating, Exenatide, Food, Glucagon-Like Peptide-1 Receptor, Glycolysis, Homeostasis, Male, Mice, Mice, Inbred C57BL, Peptides, Sensation, TOR Serine-Threonine Kinases, Venoms, Ventromedial Hypothalamic Nucleus
Show Abstract · Added October 23, 2017
Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis.
Copyright © 2017 the American Physiological Society.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione Core.
Nance KD, Days EL, Weaver CD, Coldren A, Farmer TD, Cho HP, Niswender CM, Blobaum AL, Niswender KD, Lindsley CW
(2017) J Med Chem 60: 1611-1616
MeSH Terms: Administration, Oral, Animals, Blood Glucose, Cells, Cultured, Central Nervous System, Glucagon-Like Peptide-1 Receptor, Halogenation, Humans, Insulin, Islets of Langerhans, Male, Pyrimidines, Rats, Sprague-Dawley
Show Abstract · Added April 6, 2017
A duplexed, functional multiaddition high throughput screen and subsequent optimization effort identified the first orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonist. Antagonist 5d not only blocked exendin-4-stimulated insulin release in islets but also lowered insulin levels while increasing blood glucose in vivo.
0 Communities
2 Members
0 Resources
13 MeSH Terms
The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice.
Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE
(2017) Diabetes 66: 372-384
MeSH Terms: Animals, Body Composition, Diet, High-Fat, Eating, Energy Metabolism, Exenatide, Gene Knockdown Techniques, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Glucose, Glucose Tolerance Test, Homeostasis, Hypothalamus, Incretins, Liraglutide, Male, Mice, Neurons, Paraventricular Hypothalamic Nucleus, Peptides, Pro-Opiomelanocortin, Venoms, Weight Gain
Show Abstract · Added October 23, 2017
Pharmacological activation of the hypothalamic glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) promotes weight loss and improves glucose tolerance. This demonstrates that the hypothalamic GLP-1R is sufficient but does not show whether it is necessary for the effects of exogenous GLP-1R agonists (GLP-1RA) or endogenous GLP-1 on these parameters. To address this, we crossed mice harboring floxed Glp1r alleles to mice expressing Nkx2.1-Cre to knock down Glp1r expression throughout the hypothalamus (GLP-1RKD). We also generated mice lacking Glp1r expression specifically in two GLP-1RA-responsive hypothalamic feeding nuclei/cell types, the paraventricular nucleus (GLP-1RKD) and proopiomelanocortin neurons (GLP-1RKD). Chow-fed GLP-1RKD mice exhibited increased food intake and energy expenditure with no net effect on body weight. When fed a high-fat diet, these mice exhibited normal food intake but elevated energy expenditure, yielding reduced weight gain. None of these phenotypes were observed in GLP-1RKD and GLP-1RKD mice. The acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA exendin-4 and liraglutide were preserved in all mouse lines. Chronic liraglutide treatment reduced body weight in chow-fed GLP-1RKD mice, but this effect was attenuated with high-fat diet feeding. In sum, classic homeostatic control regions are sufficient but not individually necessary for the effects of GLP-1RA on nutrient homeostasis.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.
Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A
(2016) Transl Psychiatry 6: e809
MeSH Terms: Animals, Arachidonic Acid, Arachidonic Acids, Cocaine, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Endocannabinoids, Exenatide, Glucagon-Like Peptide-1 Receptor, Glycerides, Homeostasis, Incretins, Mice, Microdialysis, Peptides, Proto-Oncogene Proteins c-fos, Septal Nuclei, Venoms
Show Abstract · Added April 6, 2017
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice.
Kubo F, Miyatsuka T, Sasaki S, Takahara M, Yamamoto Y, Shimo N, Watada H, Kaneto H, Gannon M, Matsuoka TA, Shimomura I
(2016) Biochem Biophys Res Commun 471: 68-74
MeSH Terms: Aging, Animals, Cells, Cultured, Diabetes Mellitus, Gene Expression Regulation, Glucagon-Like Peptide-1 Receptor, Glucose, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic
Show Abstract · Added February 16, 2016
Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1(PB)-CreER(TM); CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions.
Copyright © 2016 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Discovery of (S)-2-cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-pyrrido[3,4-b]indole-4-carboxamide (VU0453379): a novel, CNS penetrant glucagon-like peptide 1 receptor (GLP-1R) positive allosteric modulator (PAM).
Morris LC, Nance KD, Gentry PR, Days EL, Weaver CD, Niswender CM, Thompson AD, Jones CK, Locuson CW, Morrison RD, Daniels JS, Niswender KD, Lindsley CW
(2014) J Med Chem 57: 10192-7
MeSH Terms: Allosteric Regulation, Animals, Catalepsy, Central Nervous System Agents, Drug Synergism, Exenatide, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Haloperidol, High-Throughput Screening Assays, Indoles, Insulin, Insulin Secretion, Islets of Langerhans, Male, Mice, Inbred C57BL, Microsomes, Liver, Peptides, Pyrrolidines, Receptors, Glucagon, Structure-Activity Relationship, Venoms
Show Abstract · Added February 16, 2015
A duplexed, functional multiaddition high throughput screen and subsequent iterative parallel synthesis effort identified the first highly selective and CNS penetrant glucagon-like peptide-1R (GLP-1R) positive allosteric modulator (PAM). PAM (S)-9b potentiated low-dose exenatide to augment insulin secretion in primary mouse pancreatic islets, and (S)-9b alone was effective in potentiating endogenous GLP-1R to reverse haloperidol-induced catalepsy.
0 Communities
4 Members
0 Resources
22 MeSH Terms
The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential.
Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y
(2014) Kidney Int 85: 579-89
MeSH Terms: Animals, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Diabetic Nephropathies, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Kidney Glomerulus, Liraglutide, Male, Mice, Inbred C57BL, NADPH Oxidases, Nitric Oxide, Oxidative Stress, Receptors, Glucagon, Signal Transduction
Show Abstract · Added March 7, 2014
Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone that has an antioxidative protective effect on various tissues. Here, we determined whether GLP-1 has a role in the pathogenesis of diabetic nephropathy using nephropathy-resistant C57BL/6-Akita and nephropathy-prone KK/Ta-Akita mice. By in situ hybridization, we found the GLP-1 receptor (GLP-1R) expressed in glomerular capillary and vascular walls, but not in tubuli, in the mouse kidney. Next, we generated C57BL/6-Akita Glp1r knockout mice. These mice exhibited higher urinary albumin levels and more advanced mesangial expansion than wild-type C57BL/6-Akita mice, despite comparable levels of hyperglycemia. Increased glomerular superoxide, upregulated renal NAD(P)H oxidase, and reduced renal cAMP and protein kinase A (PKA) activity were noted in the Glp1r knockout C57BL/6-Akita mice. Treatment with the GLP-1R agonist liraglutide suppressed the progression of nephropathy in KK/Ta-Akita mice, as demonstrated by reduced albuminuria and mesangial expansion, decreased levels of glomerular superoxide and renal NAD(P)H oxidase, and elevated renal cAMP and PKA activity. These effects were abolished by an adenylate cyclase inhibitor SQ22536 and a selective PKA inhibitor H-89. Thus, GLP-1 has a crucial role in protection against increased renal oxidative stress under chronic hyperglycemia, by inhibition of NAD(P)H oxidase, a major source of superoxide, and by cAMP-PKA pathway activation.
0 Communities
1 Members
0 Resources
15 MeSH Terms