Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 854

Publication Record

Connections

Gene expression imputation across multiple brain regions provides insights into schizophrenia risk.
Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardiñas AF, Rajagopal VM, Als TD, T Nguyen H, Girdhar K, Boocock J, Roussos P, Fromer M, Kramer R, Domenici E, Gamazon ER, Purcell S, CommonMind Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, iPSYCH-GEMS Schizophrenia Working Group, Demontis D, Børglum AD, Walters JTR, O'Donovan MC, Sullivan P, Owen MJ, Devlin B, Sieberts SK, Cox NJ, Im HK, Sklar P, Stahl EA
(2019) Nat Genet 51: 659-674
MeSH Terms: Brain, Case-Control Studies, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk, Schizophrenia, Transcriptome
Show Abstract · Added July 17, 2019
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
0 Communities
1 Members
0 Resources
MeSH Terms
iNKT Cell Activation Exacerbates the Development of Huntington's Disease in R6/2 Transgenic Mice.
Park HJ, Lee SW, Im W, Kim M, Van Kaer L, Hong S
(2019) Mediators Inflamm 2019: 3540974
MeSH Terms: Animals, Brain, Cytokines, Disease Models, Animal, Disease Progression, Galactosylceramides, Genotype, Huntington Disease, Leukocytes, Lymphocyte Activation, Mice, Mice, Knockout, Natural Killer T-Cells
Show Abstract · Added March 26, 2019
Huntington's disease (HD) is an inherited neurodegenerative disorder which is caused by a mutation of the huntingtin (HTT) gene. Although the pathogenesis of HD has been associated with inflammatory responses, if and how the immune system contributes to the onset of HD is largely unknown. Invariant natural killer T (iNKT) cells are a group of innate-like regulatory T lymphocytes that can rapidly produce various cytokines such as IFN and IL4 upon stimulation with the glycolipid -galactosylceramide (-GalCer). By employing both R6/2 Tg mice (murine HD model) and J18 KO mice (deficient in iNKT cells), we investigated whether alterations of iNKT cells affect the development of HD in R6/2 Tg mice. We found that J18 KO R6/2 Tg mice showed disease progression comparable to R6/2 Tg mice, indicating that the absence of iNKT cells did not have any significant effects on HD development. However, repeated activation of iNKT cells with -GalCer facilitated HD progression in R6/2 Tg mice, and this was associated with increased infiltration of iNKT cells in the brain. Taken together, our results demonstrate that repeated -GalCer treatment of R6/2 Tg mice accelerates HD progression, suggesting that immune activation can affect the severity of HD pathogenesis.
0 Communities
1 Members
0 Resources
13 MeSH Terms
A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk.
Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA, Type 1 Diabetes TrialNet Study Group
(2018) Diabetes Care 41: 1887-1894
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Complications, Diabetes Mellitus, Type 1, Disease Progression, Female, Genetic Predisposition to Disease, Genotype, HLA-DQ Antigens, Humans, Infant, Islets of Langerhans, Male, Middle Aged, Polymorphism, Single Nucleotide, Prognosis, Risk Factors, Young Adult
Show Abstract · Added July 23, 2018
OBJECTIVE - We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals.
RESEARCH DESIGN AND METHODS - We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients' relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2-51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial-Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables.
RESULTS - Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06-1.6; = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS >0.295, 95% CI 1.47-3.51; = 0.0002).
CONCLUSIONS - The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation.
Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, Ongen H, Konkashbaev A, Derks EM, Aguet F, Quan J, GTEx Consortium, Nicolae DL, Eskin E, Kellis M, Getz G, McCarthy MI, Dermitzakis ET, Cox NJ, Ardlie KG
(2018) Nat Genet 50: 956-967
MeSH Terms: Disease, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Genome-Wide Association Study, Genotype, Humans, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable
Show Abstract · Added July 1, 2018
We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis-eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40-80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU.
0 Communities
1 Members
0 Resources
11 MeSH Terms
APOE genotype modifies the association between central arterial stiffening and cognition in older adults.
Cambronero FE, Liu D, Neal JE, Moore EE, Gifford KA, Terry JG, Nair S, Pechman KR, Osborn KE, Hohman TJ, Bell SP, Sweatt JD, Wang TJ, Beckman JA, Carr JJ, Jefferson AL
(2018) Neurobiol Aging 67: 120-127
MeSH Terms: Aged, Aged, 80 and over, Aging, Alzheimer Disease, Apolipoproteins E, Cognition, Cognitive Dysfunction, Female, Genetic Association Studies, Genotype, Humans, Magnetic Resonance Imaging, Male, Pulse Wave Analysis, Risk Factors, Vascular Stiffness
Show Abstract · Added September 11, 2018
Arterial stiffening is associated with cognitive impairment and prodromal Alzheimer's disease. This study tested the interaction between arterial stiffening and an Alzheimer's disease genetic risk factor (apolipoprotein E [APOE] genotype) on cognition among older adults. Vanderbilt Memory & Aging Project participants with normal cognition (n = 162, 72 ± 7 years, 29% APOE-ε4 carrier) and mild cognitive impairment (n = 121, 73 ± 8 years, 42% APOE-ε4 carrier) completed neuropsychological assessment and cardiac MRI to assess aortic stiffening using pulse wave velocity (PWV, m/s). Linear regression models stratified by cognitive diagnosis related aortic PWV × APOE-ε4 status to neuropsychological performances, adjusting for demographic and vascular risk factors. PWV × APOE-ε4 related to poorer performance on measures of lexical retrieval (β = -0.29, p = 0.01), executive function (β = -0.44, p = 0.02), and episodic memory (β = -3.07, p = 0.02). Among participants with higher aortic PWV, APOE-ε4 modified the association between central arterial stiffening and cognition, such that carriers had worse performances than noncarriers. Findings add to a growing body of evidence for APOE-vascular interactions on cognition in older adults and warrant further research into less heart-healthy cohorts where the association between PWV and cognition among older adults might be stronger.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels.
Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L, Pietka T, Xiong Y, Wei Y, Abumrad NN, Abumrad NA, Flynn CR
(2018) J Clin Endocrinol Metab 103: 1856-1866
MeSH Terms: Adult, African Americans, Bile Acids and Salts, CD36 Antigens, Case-Control Studies, Energy Metabolism, Fasting, Female, Genotype, Hormones, Humans, Intestinal Absorption, Middle Aged, Polymorphism, Single Nucleotide
Show Abstract · Added May 14, 2018
Context - Abnormal fatty acid (FA) metabolism contributes to diabetes and cardiovascular disease. The FA receptor CD36 has been linked to risk of metabolic syndrome. In rodents CD36 regulates various aspects of fat metabolism, but whether it has similar actions in humans is unknown. We examined the impact of a coding single-nucleotide polymorphism in CD36 on postprandial hormone and bile acid (BA) responses.
Objective - To examine whether the minor allele (G) of coding CD36 variant rs3211938 (G/T), which reduces CD36 level by ∼50%, influences hormonal responses to a high-fat meal (HFM).
Design - Obese African American (AA) women carriers of the G allele of rs3211938 (G/T) and weight-matched noncarriers (T/T) were studied before and after a HFM.
Setting - Two-center study.
Participants - Obese AA women.
Intervention - HFM.
Main Outcome Measures - Early preabsorptive responses (10 minutes) and extended excursions in plasma hormones [C-peptide, insulin, incretins, ghrelin fibroblast growth factor (FGF)19, FGF21], BAs, and serum lipoproteins (chylomicrons, very-low-density lipoprotein) were determined.
Results - At fasting, G-allele carriers had significantly reduced cholesterol and glycodeoxycholic acid and consistent but nonsignificant reductions of serum lipoproteins. Levels of GLP-1 and pancreatic polypeptide (PP) were reduced 60% to 70% and those of total BAs were 1.8-fold higher. After the meal, G-allele carriers displayed attenuated early (-10 to 10 minute) responses in insulin, C-peptide, GLP-1, gastric inhibitory peptide, and PP. BAs exhibited divergent trends in G allele carriers vs noncarriers concomitant with differential FGF19 responses.
Conclusions - CD36 plays an important role in the preabsorptive hormone and BA responses that coordinate brain and gut regulation of energy metabolism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Benefit of Preemptive Pharmacogenetic Information on Clinical Outcome.
Roden DM, Van Driest SL, Mosley JD, Wells QS, Robinson JR, Denny JC, Peterson JF
(2018) Clin Pharmacol Ther 103: 787-794
MeSH Terms: Drug Prescriptions, Genetic Variation, Genotype, Humans, Pharmacogenetics, Pharmacogenomic Testing
Show Abstract · Added March 14, 2018
The development of new knowledge around the genetic determinants of variable drug action has naturally raised the question of how this new knowledge can be used to improve the outcome of drug therapy. Two broad approaches have been taken: a point-of-care approach in which genotyping for specific variant(s) is undertaken at the time of drug prescription, and a preemptive approach in which multiple genetic variants are typed in an individual patient and the information archived for later use when a drug with a "pharmacogenetic story" is prescribed. This review addresses the current state of implementation, the rationale for these approaches, and barriers that must be overcome. Benefits to pharmacogenetic testing are only now being defined and will be discussed.
© 2018 American Society for Clinical Pharmacology and Therapeutics.
0 Communities
2 Members
0 Resources
6 MeSH Terms
Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees.
Jun G, Manning A, Almeida M, Zawistowski M, Wood AR, Teslovich TM, Fuchsberger C, Feng S, Cingolani P, Gaulton KJ, Dyer T, Blackwell TW, Chen H, Chines PS, Choi S, Churchhouse C, Fontanillas P, King R, Lee S, Lincoln SE, Trubetskoy V, DePristo M, Fingerlin T, Grossman R, Grundstad J, Heath A, Kim J, Kim YJ, Laramie J, Lee J, Li H, Liu X, Livne O, Locke AE, Maller J, Mazur A, Morris AP, Pollin TI, Ragona D, Reich D, Rivas MA, Scott LJ, Sim X, Tearle RG, Teo YY, Williams AL, Zöllner S, Curran JE, Peralta J, Akolkar B, Bell GI, Burtt NP, Cox NJ, Florez JC, Hanis CL, McKeon C, Mohlke KL, Seielstad M, Wilson JG, Atzmon G, Below JE, Dupuis J, Nicolae DL, Lehman D, Park T, Won S, Sladek R, Altshuler D, McCarthy MI, Duggirala R, Boehnke M, Frayling TM, Abecasis GR, Blangero J
(2018) Proc Natl Acad Sci U S A 115: 379-384
MeSH Terms: Diabetes Mellitus, Type 2, Family Health, Female, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Mexican Americans, Pedigree, Phenotype, Quantitative Trait Loci, Whole Genome Sequencing
Show Abstract · Added March 15, 2018
A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant -expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes.
Divers J, Palmer ND, Langefeld CD, Brown WM, Lu L, Hicks PJ, Smith SC, Xu J, Terry JG, Register TC, Wagenknecht LE, Parks JS, Ma L, Chan GC, Buxbaum SG, Correa A, Musani S, Wilson JG, Taylor HA, Bowden DW, Carr JJ, Freedman BI
(2017) BMC Genet 18: 105
MeSH Terms: African Americans, Coronary Vessels, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Plaque, Atherosclerotic, Polymorphism, Single Nucleotide, Prevalence, United States, Vascular Calcification
Show Abstract · Added December 13, 2017
BACKGROUND - Coronary artery calcified atherosclerotic plaque (CAC) predicts cardiovascular disease (CVD). Despite exposure to more severe conventional CVD risk factors, African Americans (AAs) are less likely to develop CAC, and when they do, have markedly lower levels than European Americans. Genetic factors likely contribute to the observed ethnic differences. To identify genes associated with CAC in AAs with type 2 diabetes (T2D), a genome-wide association study (GWAS) was performed using the Illumina 5 M chip in 691 African American-Diabetes Heart Study participants (AA-DHS), with replication in 205 Jackson Heart Study (JHS) participants with T2D. Genetic association tests were performed on the genotyped and 1000 Genomes-imputed markers separately for each study, and combined in a meta-analysis.
RESULTS - Single nucleotide polymorphisms (SNPs), rs11353135 (2q22.1), rs16879003 (6p22.3), rs5014012, rs58071836 and rs10244825 (all on chromosome 7), rs10918777 (9q31.2), rs13331874 (16p13.3) and rs4459623 (18q12.1) were associated with presence and/or quantity of CAC in the AA-DHS and JHS, with meta-analysis p-values ≤8.0 × 10. The strongest result in AA-DHS alone was rs6491315 in the 13q32.1 region (parameter estimate (SE) = -1.14 (0.20); p-value = 9.1 × 10). This GWAS peak replicated a previously reported AA-DHS CAC admixture signal (rs7492028, LOD score 2.8).
CONCLUSIONS - Genetic association between SNPs on chromosomes 2, 6, 7, 9, 16 and 18 and CAC were detected in AAs with T2D from AA-DHS and replicated in the JHS. These data support a role for genetic variation on these chromosomes as contributors to CAC in AAs with T2D, as well as to variation in CAC between populations of African and European ancestry.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Using Human 'Experiments of Nature' to Predict Drug Safety Issues: An Example with PCSK9 Inhibitors.
Jerome RN, Pulley JM, Roden DM, Shirey-Rice JK, Bastarache LA, R Bernard G, B Ekstrom L, Lancaster WJ, Denny JC
(2018) Drug Saf 41: 303-311
MeSH Terms: Cholesterol, LDL, Enzyme Inhibitors, Female, Genotype, Humans, Hypercholesterolemia, Male, Phenotype, Polymorphism, Single Nucleotide, Product Surveillance, Postmarketing, Proprotein Convertase 9, Risk Factors, Spinal Dysraphism
Show Abstract · Added March 14, 2018
INTRODUCTION - When a new drug enters the market, its full array of side effects remains to be defined. Current surveillance approaches targeting these effects remain largely reactive. There is a need for development of methods to predict specific safety events that should be sought for a given new drug during development and postmarketing activities.
OBJECTIVE - We present here a safety signal identification approach applied to a new set of drug entities, inhibitors of the serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9).
METHODS - Using phenome-wide association study (PheWAS) methods, we analyzed available genotype and clinical data from 29,722 patients, leveraging the known effects of changes in PCSK9 to identify novel phenotypes in which this protein and its inhibitors may have impact.
RESULTS - PheWAS revealed a significantly reduced risk of hypercholesterolemia (odds ratio [OR] 0.68, p = 7.6 × 10) in association with a known loss-of-function variant in PCSK9, R46L. Similarly, laboratory data indicated significantly reduced beta mean low-density lipoprotein cholesterol (- 14.47 mg/dL, p = 2.58 × 10) in individuals carrying the R46L variant. The R46L variant was also associated with an increased risk of spina bifida (OR 5.90, p = 2.7 × 10), suggesting that further investigation of potential connections between inhibition of PCSK9 and neural tube defects may be warranted.
CONCLUSION - This novel methodology provides an opportunity to put in place new mechanisms to assess the safety and long-term tolerability of PCSK9 inhibitors specifically, and other new agents in general, as they move into human testing and expanded clinical use.
0 Communities
1 Members
0 Resources
13 MeSH Terms