Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 570

Publication Record

Connections

Predictive Accuracy of a Polygenic Risk Score Compared With a Clinical Risk Score for Incident Coronary Heart Disease.
Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, Kundu S, Robinson-Cohen C, Psaty BM, Rich SS, Post WS, Guo X, Rotter JI, Roden DM, Gerszten RE, Wang TJ
(2020) JAMA 323: 627-635
MeSH Terms: Aged, Cohort Studies, Coronary Disease, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Incidence, Male, Middle Aged, Multifactorial Inheritance, Myocardial Infarction, Odds Ratio, Phenotype, Polymorphism, Single Nucleotide, Predictive Value of Tests, Proportional Hazards Models, Retrospective Studies, Risk, Risk Assessment
Show Abstract · Added March 24, 2020
Importance - Polygenic risk scores comprising millions of single-nucleotide polymorphisms (SNPs) could be useful for population-wide coronary heart disease (CHD) screening.
Objective - To determine whether a polygenic risk score improves prediction of CHD compared with a guideline-recommended clinical risk equation.
Design, Setting, and Participants - A retrospective cohort study of the predictive accuracy of a previously validated polygenic risk score was assessed among 4847 adults of white European ancestry, aged 45 through 79 years, participating in the Atherosclerosis Risk in Communities (ARIC) study and 2390 participating in the Multi-Ethnic Study of Atherosclerosis (MESA) from 1996 through December 31, 2015, the final day of follow-up. The performance of the polygenic risk score was compared with that of the 2013 American College of Cardiology and American Heart Association pooled cohort equations.
Exposures - Genetic risk was computed for each participant by summing the product of the weights and allele dosage across 6 630 149 SNPs. Weights were based on an international genome-wide association study.
Main Outcomes and Measures - Prediction of 10-year first CHD events (including myocardial infarctions, fatal coronary events, silent infarctions, revascularization procedures, or resuscitated cardiac arrest) assessed using measures of model discrimination, calibration, and net reclassification improvement (NRI).
Results - The study population included 4847 adults from the ARIC study (mean [SD] age, 62.9 [5.6] years; 56.4% women) and 2390 adults from the MESA cohort (mean [SD] age, 61.8 [9.6] years; 52.2% women). Incident CHD events occurred in 696 participants (14.4%) and 227 participants (9.5%), respectively, over median follow-up of 15.5 years (interquartile range [IQR], 6.3 years) and 14.2 (IQR, 2.5 years) years. The polygenic risk score was significantly associated with 10-year CHD incidence in ARIC with hazard ratios per SD increment of 1.24 (95% CI, 1.15 to 1.34) and in MESA, 1.38 (95% CI, 1.21 to 1.58). Addition of the polygenic risk score to the pooled cohort equations did not significantly increase the C statistic in either cohort (ARIC, change in C statistic, -0.001; 95% CI, -0.009 to 0.006; MESA, 0.021; 95% CI, -0.0004 to 0.043). At the 10-year risk threshold of 7.5%, the addition of the polygenic risk score to the pooled cohort equations did not provide significant improvement in reclassification in either ARIC (NRI, 0.018, 95% CI, -0.012 to 0.036) or MESA (NRI, 0.001, 95% CI, -0.038 to 0.076). The polygenic risk score did not significantly improve calibration in either cohort.
Conclusions and Relevance - In this analysis of 2 cohorts of US adults, the polygenic risk score was associated with incident coronary heart disease events but did not significantly improve discrimination, calibration, or risk reclassification compared with conventional predictors. These findings suggest that a polygenic risk score may not enhance risk prediction in a general, white middle-aged population.
0 Communities
1 Members
0 Resources
MeSH Terms
Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, GEMO Study Collaborators, EMBRACE Collaborators, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gago-Dominguez M, Gambino G, Ganz PA, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Tibiletti MG, Greene MH, Grip M, Gronwald J, Grundy A, Guénel P, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hartikainen JM, Hartman M, He W, Healey CS, Heemskerk-Gerritsen BAM, Heyworth J, Hillemanns P, Hogervorst FBL, Hollestelle A, Hooning MJ, Hopper JL, Howell A, Huang G, Hulick PJ, Imyanitov EN, KConFab Investigators, HEBON Investigators, ABCTB Investigators, Isaacs C, Iwasaki M, Jager A, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kang D, Kapoor PM, Karlan BY, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Kirk J, Kitahara CM, Ko YD, Konstantopoulou I, Kosma VM, Koutros S, Kubelka-Sabit K, Kwong A, Kyriacou K, Laitman Y, Lambrechts D, Lee E, Leslie G, Lester J, Lesueur F, Lindblom A, Lo WY, Long J, Lophatananon A, Loud JT, Lubiński J, MacInnis RJ, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matsuo K, Maurer T, Mavroudis D, Mayes R, McGuffog L, McLean C, Mebirouk N, Meindl A, Miller A, Miller N, Montagna M, Moreno F, Muir K, Mulligan AM, Muñoz-Garzon VM, Muranen TA, Narod SA, Nassir R, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nikitina-Zake L, Norman A, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Osorio A, Pankratz VS, Papp J, Park SK, Park-Simon TW, Parsons MT, Paul J, Pedersen IS, Peissel B, Peshkin B, Peterlongo P, Peto J, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Prokofyeva D, Pujana MA, Pylkäs K, Radice P, Ramus SJ, Rantala J, Rau-Murthy R, Rennert G, Risch HA, Robson M, Romero A, Rossing M, Saloustros E, Sánchez-Herrero E, Sandler DP, Santamariña M, Saunders C, Sawyer EJ, Scheuner MT, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Scott C, Scott RJ, Senter L, Seynaeve CM, Shah M, Sharma P, Shen CY, Shu XO, Singer CF, Slavin TP, Smichkoska S, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Stoppa-Lyonnet D, Sutter C, Swerdlow AJ, Tamimi RM, Tan YY, Tapper WJ, Taylor JA, Teixeira MR, Tengström M, Teo SH, Terry MB, Teulé A, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Torres-Mejía G, Troester MA, Truong T, Tung N, Tzardi M, Ulmer HU, Vachon CM, van Asperen CJ, van der Kolk LE, van Rensburg EJ, Vega A, Viel A, Vijai J, Vogel MJ, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wildiers H, Winqvist R, Wolk A, Wu AH, Yannoukakos D, Zhang Y, Zheng W, Hunter D, Pharoah PDP, Chang-Claude J, García-Closas M, Schmidt MK, Milne RL, Kristensen VN, French JD, Edwards SL, Antoniou AC, Chenevix-Trench G, Simard J, Easton DF, Kraft P, Dunning AM
(2020) Nat Genet 52: 56-73
MeSH Terms: Bayes Theorem, Biomarkers, Tumor, Breast Neoplasms, Chromosome Mapping, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Regulatory Sequences, Nucleic Acid, Risk Factors
Show Abstract · Added March 3, 2020
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9.
Schmidt AF, Holmes MV, Preiss D, Swerdlow DI, Denaxas S, Fatemifar G, Faraway R, Finan C, Valentine D, Fairhurst-Hunter Z, Hartwig FP, Horta BL, Hypponen E, Power C, Moldovan M, van Iperen E, Hovingh K, Demuth I, Norman K, Steinhagen-Thiessen E, Demuth J, Bertram L, Lill CM, Coassin S, Willeit J, Kiechl S, Willeit K, Mason D, Wright J, Morris R, Wanamethee G, Whincup P, Ben-Shlomo Y, McLachlan S, Price JF, Kivimaki M, Welch C, Sanchez-Galvez A, Marques-Vidal P, Nicolaides A, Panayiotou AG, Onland-Moret NC, van der Schouw YT, Matullo G, Fiorito G, Guarrera S, Sacerdote C, Wareham NJ, Langenberg C, Scott RA, Luan J, Bobak M, Malyutina S, Pająk A, Kubinova R, Tamosiunas A, Pikhart H, Grarup N, Pedersen O, Hansen T, Linneberg A, Jess T, Cooper J, Humphries SE, Brilliant M, Kitchner T, Hakonarson H, Carrell DS, McCarty CA, Lester KH, Larson EB, Crosslin DR, de Andrade M, Roden DM, Denny JC, Carty C, Hancock S, Attia J, Holliday E, Scott R, Schofield P, O'Donnell M, Yusuf S, Chong M, Pare G, van der Harst P, Said MA, Eppinga RN, Verweij N, Snieder H, Lifelines Cohort authors, Christen T, Mook-Kanamori DO, ICBP Consortium, Gustafsson S, Lind L, Ingelsson E, Pazoki R, Franco O, Hofman A, Uitterlinden A, Dehghan A, Teumer A, Baumeister S, Dörr M, Lerch MM, Völker U, Völzke H, Ward J, Pell JP, Meade T, Christophersen IE, Maitland-van der Zee AH, Baranova EV, Young R, Ford I, Campbell A, Padmanabhan S, Bots ML, Grobbee DE, Froguel P, Thuillier D, Roussel R, Bonnefond A, Cariou B, Smart M, Bao Y, Kumari M, Mahajan A, Hopewell JC, Seshadri S, METASTROKE Consortium of the ISGC, Dale C, Costa RPE, Ridker PM, Chasman DI, Reiner AP, Ritchie MD, Lange LA, Cornish AJ, Dobbins SE, Hemminki K, Kinnersley B, Sanson M, Labreche K, Simon M, Bondy M, Law P, Speedy H, Allan J, Li N, Went M, Weinhold N, Morgan G, Sonneveld P, Nilsson B, Goldschmidt H, Sud A, Engert A, Hansson M, Hemingway H, Asselbergs FW, Patel RS, Keating BJ, Sattar N, Houlston R, Casas JP, Hingorani AD
(2019) BMC Cardiovasc Disord 19: 240
MeSH Terms: Anticholesteremic Agents, Biomarkers, Brain Ischemia, Cholesterol, LDL, Down-Regulation, Dyslipidemias, Genome-Wide Association Study, Humans, Myocardial Infarction, Polymorphism, Single Nucleotide, Proprotein Convertase 9, Randomized Controlled Trials as Topic, Risk Assessment, Risk Factors, Serine Proteinase Inhibitors, Stroke, Treatment Outcome
Show Abstract · Added March 24, 2020
BACKGROUND - We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9.
METHODS - Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration.
RESULTS - The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable.
CONCLUSIONS - Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.
Irvin MR, Sitlani CM, Floyd JS, Psaty BM, Bis JC, Wiggins KL, Whitsel EA, Sturmer T, Stewart J, Raffield L, Sun F, Liu CT, Xu H, Cupples AL, Tanner RM, Rossing P, Smith A, Zilhão NR, Launer LJ, Noordam R, Rotter JI, Yao J, Li X, Guo X, Limdi N, Sundaresan A, Lange L, Correa A, Stott DJ, Ford I, Jukema JW, Gudnason V, Mook-Kanamori DO, Trompet S, Palmas W, Warren HR, Hellwege JN, Giri A, O'donnell C, Hung AM, Edwards TL, Ahluwalia TS, Arnett DK, Avery CL
(2019) Am J Hypertens 32: 1146-1153
MeSH Terms: African Americans, Aged, Antihypertensive Agents, Blood Pressure, Case-Control Studies, DNA (Cytosine-5-)-Methyltransferases, DNA-Binding Proteins, Drug Resistance, Dystrophin-Associated Proteins, Europe, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Male, Middle Aged, Myosin Heavy Chains, Myosin Type V, Neuropeptides, Pharmacogenetics, Pharmacogenomic Variants, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Transcription Factors, United States
Show Abstract · Added March 3, 2020
BACKGROUND - Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.
METHODS - We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.
RESULTS - The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10-8) and in the race-combined analysis (P = 1.5 × 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.
CONCLUSION - This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.
© American Journal of Hypertension, Ltd 2019. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Sex differences in the genetic predictors of Alzheimer's pathology.
Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, Bush WS, Gifford KA, Chibnik LB, Mukherjee S, De Jager PL, Kukull W, Crane PK, Resnick SM, Keene CD, Montine TJ, Schellenberg GD, Deming Y, Chao MJ, Huentelman M, Martin ER, Hamilton-Nelson K, Shaw LM, Trojanowski JQ, Peskind ER, Cruchaga C, Pericak-Vance MA, Goate AM, Cox NJ, Haines JL, Zetterberg H, Blennow K, Larson EB, Johnson SC, Albert M, Alzheimer’s Disease Genetics Consortium and the Alzheimer’s Disease Neuroimaging Initiative, Bennett DA, Schneider JA, Jefferson AL, Hohman TJ
(2019) Brain 142: 2581-2589
MeSH Terms: Aged, Aged, 80 and over, Alzheimer Disease, Amyloid beta-Peptides, Cohort Studies, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Polymorphism, Single Nucleotide, Sex Characteristics, tau Proteins
Show Abstract · Added March 30, 2020
Autopsy measures of Alzheimer's disease neuropathology have been leveraged as endophenotypes in previous genome-wide association studies (GWAS). However, despite evidence of sex differences in Alzheimer's disease risk, sex-stratified models have not been incorporated into previous GWAS analyses. We looked for sex-specific genetic associations with Alzheimer's disease endophenotypes from six brain bank data repositories. The pooled dataset included 2701 males and 3275 females, the majority of whom were diagnosed with Alzheimer's disease at autopsy (70%). Sex-stratified GWAS were performed within each dataset and then meta-analysed. Loci that reached genome-wide significance (P < 5 × 10-8) in stratified models were further assessed for sex interactions. Additional analyses were performed in independent datasets leveraging cognitive, neuroimaging and CSF endophenotypes, along with age-at-onset data. Outside of the APOE region, one locus on chromosome 7 (rs34331204) showed a sex-specific association with neurofibrillary tangles among males (P = 2.5 × 10-8) but not females (P = 0.85, sex-interaction P = 2.9 × 10-4). In follow-up analyses, rs34331204 was also associated with hippocampal volume, executive function, and age-at-onset only among males. These results implicate a novel locus that confers male-specific protection from tau pathology and highlight the value of assessing genetic associations in a sex-specific manner.
© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.
Hellwege JN, Velez Edwards DR, Giri A, Qiu C, Park J, Torstenson ES, Keaton JM, Wilson OD, Robinson-Cohen C, Chung CP, Roumie CL, Klarin D, Damrauer SM, DuVall SL, Siew E, Akwo EA, Wuttke M, Gorski M, Li M, Li Y, Gaziano JM, Wilson PWF, Tsao PS, O'Donnell CJ, Kovesdy CP, Pattaro C, Köttgen A, Susztak K, Edwards TL, Hung AM
(2019) Nat Commun 10: 3842
MeSH Terms: Adult, Aged, Animals, Cell Line, Chromosome Mapping, Cohort Studies, Computational Biology, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Male, Mice, Middle Aged, Polymorphism, Single Nucleotide, RNA-Seq, Renal Insufficiency, Chronic, Transcriptome, United States, United States Department of Veterans Affairs, Veterans
Show Abstract · Added March 3, 2020
Chronic kidney disease (CKD), defined by low estimated glomerular filtration rate (eGFR), contributes to global morbidity and mortality. Here we conduct a transethnic Genome-Wide Association Study of eGFR in 280,722 participants of the Million Veteran Program (MVP), with replication in 765,289 participants from the Chronic Kidney Disease Genetics (CKDGen) Consortium. We identify 82 previously unreported variants, confirm 54 loci, and report interesting findings including association of the sickle cell allele of betaglobin among non-Hispanic blacks. Our transcriptome-wide association study of kidney function in healthy kidney tissue identifies 36 previously unreported and nine known genes, and maps gene expression to renal cell types. In a Phenome-Wide Association Study in 192,868 MVP participants using a weighted genetic score we detect associations with CKD stages and complications and kidney stones. This investigation reinterprets the genetic architecture of kidney function to identify the gene, tissue, and anatomical context of renal homeostasis and the clinical consequences of dysregulation.
0 Communities
1 Members
0 Resources
MeSH Terms
A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression.
Gerring ZF, Gamazon ER, Derks EM, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
(2019) PLoS Genet 15: e1008245
MeSH Terms: Brain Chemistry, Complement C4a, Depressive Disorder, Major, Gene Expression Profiling, Gene Expression Regulation, Gene Regulatory Networks, Genome-Wide Association Study, Humans, Organ Specificity, Quantitative Trait Loci, Sequence Analysis, RNA
Show Abstract · Added July 17, 2019
Major depression is a common and severe psychiatric disorder with a highly polygenic genetic architecture. Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with major depression, but the exact causal genes and biological mechanisms are largely unknown. Tissue-specific network approaches may identify molecular mechanisms underlying major depression and provide a biological substrate for integrative analyses. We provide a framework for the identification of individual risk genes and gene co-expression networks using genome-wide association summary statistics and gene expression information across multiple human brain tissues and whole blood. We developed a novel gene-based method called eMAGMA that leverages tissue-specific eQTL information to identify 99 biologically plausible risk genes associated with major depression, of which 58 are novel. Among these novel associations is Complement Factor 4A (C4A), recently implicated in schizophrenia through its role in synaptic pruning during postnatal development. Major depression risk genes were enriched in gene co-expression modules in multiple brain tissues and the implicated gene modules contained genes involved in synaptic signalling, neuronal development, and cell transport pathways. Modules enriched with major depression signals were strongly preserved across brain tissues, but were weakly preserved in whole blood, highlighting the importance of using disease-relevant tissues in genetic studies of psychiatric traits. We identified tissue-specific genes and gene co-expression networks associated with major depression. Our novel analytical framework can be used to gain fundamental insights into the functioning of the nervous system in major depression and other brain-related traits.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues.
Moon JM, Capra JA, Abbot P, Rokas A
(2019) G3 (Bethesda) 9: 2761-2774
MeSH Terms: DNA Transposable Elements, Databases, Genetic, Enhancer Elements, Genetic, Evolution, Molecular, Genome-Wide Association Study, Genomics, Humans, Immunity, Organ Specificity, Quantitative Trait, Heritable, Selection, Genetic
Show Abstract · Added March 3, 2020
Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima's , , H12, ) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions' shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.
Copyright © 2019 Moon et al.
0 Communities
1 Members
0 Resources
MeSH Terms
A catalog of genetic loci associated with kidney function from analyses of a million individuals.
Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, Kirsten H, Giri A, Chai JF, Sveinbjornsson G, Tayo BO, Nutile T, Fuchsberger C, Marten J, Cocca M, Ghasemi S, Xu Y, Horn K, Noce D, van der Most PJ, Sedaghat S, Yu Z, Akiyama M, Afaq S, Ahluwalia TS, Almgren P, Amin N, Ärnlöv J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boehnke M, Boerwinkle E, Boissel M, Bottinger EP, Boutin TS, Brenner H, Brumat M, Burkhardt R, Butterworth AS, Campana E, Campbell A, Campbell H, Canouil M, Carroll RJ, Catamo E, Chambers JC, Chee ML, Chee ML, Chen X, Cheng CY, Cheng Y, Christensen K, Cifkova R, Ciullo M, Concas MP, Cook JP, Coresh J, Corre T, Sala CF, Cusi D, Danesh J, Daw EW, de Borst MH, De Grandi A, de Mutsert R, de Vries APJ, Degenhardt F, Delgado G, Demirkan A, Di Angelantonio E, Dittrich K, Divers J, Dorajoo R, Eckardt KU, Ehret G, Elliott P, Endlich K, Evans MK, Felix JF, Foo VHX, Franco OH, Franke A, Freedman BI, Freitag-Wolf S, Friedlander Y, Froguel P, Gansevoort RT, Gao H, Gasparini P, Gaziano JM, Giedraitis V, Gieger C, Girotto G, Giulianini F, Gögele M, Gordon SD, Gudbjartsson DF, Gudnason V, Haller T, Hamet P, Harris TB, Hartman CA, Hayward C, Hellwege JN, Heng CK, Hicks AA, Hofer E, Huang W, Hutri-Kähönen N, Hwang SJ, Ikram MA, Indridason OS, Ingelsson E, Ising M, Jaddoe VWV, Jakobsdottir J, Jonas JB, Joshi PK, Josyula NS, Jung B, Kähönen M, Kamatani Y, Kammerer CM, Kanai M, Kastarinen M, Kerr SM, Khor CC, Kiess W, Kleber ME, Koenig W, Kooner JS, Körner A, Kovacs P, Kraja AT, Krajcoviechova A, Kramer H, Krämer BK, Kronenberg F, Kubo M, Kühnel B, Kuokkanen M, Kuusisto J, La Bianca M, Laakso M, Lange LA, Langefeld CD, Lee JJ, Lehne B, Lehtimäki T, Lieb W, Lifelines Cohort Study, Lim SC, Lind L, Lindgren CM, Liu J, Liu J, Loeffler M, Loos RJF, Lucae S, Lukas MA, Lyytikäinen LP, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Martins J, März W, Mascalzoni D, Matsuda K, Meisinger C, Meitinger T, Melander O, Metspalu A, Mikaelsdottir EK, Milaneschi Y, Miliku K, Mishra PP, V. A. Million Veteran Program, Mohlke KL, Mononen N, Montgomery GW, Mook-Kanamori DO, Mychaleckyj JC, Nadkarni GN, Nalls MA, Nauck M, Nikus K, Ning B, Nolte IM, Noordam R, O'Connell J, O'Donoghue ML, Olafsson I, Oldehinkel AJ, Orho-Melander M, Ouwehand WH, Padmanabhan S, Palmer ND, Palsson R, Penninx BWJH, Perls T, Perola M, Pirastu M, Pirastu N, Pistis G, Podgornaia AI, Polasek O, Ponte B, Porteous DJ, Poulain T, Pramstaller PP, Preuss MH, Prins BP, Province MA, Rabelink TJ, Raffield LM, Raitakari OT, Reilly DF, Rettig R, Rheinberger M, Rice KM, Ridker PM, Rivadeneira F, Rizzi F, Roberts DJ, Robino A, Rossing P, Rudan I, Rueedi R, Ruggiero D, Ryan KA, Saba Y, Sabanayagam C, Salomaa V, Salvi E, Saum KU, Schmidt H, Schmidt R, Schöttker B, Schulz CA, Schupf N, Shaffer CM, Shi Y, Smith AV, Smith BH, Soranzo N, Spracklen CN, Strauch K, Stringham HM, Stumvoll M, Svensson PO, Szymczak S, Tai ES, Tajuddin SM, Tan NYQ, Taylor KD, Teren A, Tham YC, Thiery J, Thio CHL, Thomsen H, Thorleifsson G, Toniolo D, Tönjes A, Tremblay J, Tzoulaki I, Uitterlinden AG, Vaccargiu S, van Dam RM, van der Harst P, van Duijn CM, Velez Edward DR, Verweij N, Vogelezang S, Völker U, Vollenweider P, Waeber G, Waldenberger M, Wallentin L, Wang YX, Wang C, Waterworth DM, Bin Wei W, White H, Whitfield JB, Wild SH, Wilson JF, Wojczynski MK, Wong C, Wong TY, Xu L, Yang Q, Yasuda M, Yerges-Armstrong LM, Zhang W, Zonderman AB, Rotter JI, Bochud M, Psaty BM, Vitart V, Wilson JG, Dehghan A, Parsa A, Chasman DI, Ho K, Morris AP, Devuyst O, Akilesh S, Pendergrass SA, Sim X, Böger CA, Okada Y, Edwards TL, Snieder H, Stefansson K, Hung AM, Heid IM, Scholz M, Teumer A, Köttgen A, Pattaro C
(2019) Nat Genet 51: 957-972
MeSH Terms: Chromosome Mapping, European Continental Ancestry Group, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Inheritance Patterns, Kidney Function Tests, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Renal Insufficiency, Chronic, Uromodulin
Show Abstract · Added March 3, 2020
Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
0 Communities
1 Members
0 Resources
MeSH Terms
On Using Local Ancestry to Characterize the Genetic Architecture of Human Traits: Genetic Regulation of Gene Expression in Multiethnic or Admixed Populations.
Zhong Y, Perera MA, Gamazon ER
(2019) Am J Hum Genet 104: 1097-1115
MeSH Terms: Ethnic Groups, Gene Expression Regulation, Genetics, Population, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Models, Genetic, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci
Show Abstract · Added July 17, 2019
Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations.
Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms