, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 51

Publication Record

Connections

On Using Local Ancestry to Characterize the Genetic Architecture of Human Traits: Genetic Regulation of Gene Expression in Multiethnic or Admixed Populations.
Zhong Y, Perera MA, Gamazon ER
(2019) Am J Hum Genet 104: 1097-1115
MeSH Terms: Ethnic Groups, Gene Expression Regulation, Genetics, Population, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Models, Genetic, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci
Show Abstract · Added July 17, 2019
Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations.
Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga JJ, Huffman JE, Hwang SJ, Ingelsson E, James A, Jansen R, Jarvelin MR, Joehanes R, Johansson Å, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kähönen M, Kathiresan S, Keavney BD, Khaw KT, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimäki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikäinen LP, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perola M, Peters A, Polasek O, Pramstaller PP, Nguyen QT, Raitakari OT, Ren M, Rettig R, Rice K, Ridker PM, Ried JS, Riese H, Ripatti S, Robino A, Rose LM, Rotter JI, Rudan I, Ruggiero D, Saba Y, Sala CF, Salomaa V, Samani NJ, Sarin AP, Schmidt R, Schmidt H, Shrine N, Siscovick D, Smith AV, Snieder H, Sõber S, Sorice R, Starr JM, Stott DJ, Strachan DP, Strawbridge RJ, Sundström J, Swertz MA, Taylor KD, Teumer A, Tobin MD, Tomaszewski M, Toniolo D, Traglia M, Trompet S, Tuomilehto J, Tzourio C, Uitterlinden AG, Vaez A, van der Most PJ, van Duijn CM, Vergnaud AC, Verwoert GC, Vitart V, Völker U, Vollenweider P, Vuckovic D, Watkins H, Wild SH, Willemsen G, Wilson JF, Wright AF, Yao J, Zemunik T, Zhang W, Attia JR, Butterworth AS, Chasman DI, Conen D, Cucca F, Danesh J, Hayward C, Howson JMM, Laakso M, Lakatta EG, Langenberg C, Melander O, Mook-Kanamori DO, Palmer CNA, Risch L, Scott RA, Scott RJ, Sever P, Spector TD, van der Harst P, Wareham NJ, Zeggini E, Levy D, Munroe PB, Newton-Cheh C, Brown MJ, Metspalu A, Hung AM, O'Donnell CJ, Edwards TL, Psaty BM, Tzoulaki I, Barnes MR, Wain LV, Elliott P, Caulfield MJ, Million Veteran Program
(2018) Nat Genet 50: 1412-1425
MeSH Terms: Adult, Aged, Aged, 80 and over, Blood Pressure, Cardiovascular Diseases, Cells, Cultured, Female, Genetic Loci, Genetic Predisposition to Disease, Genetic Testing, Genetics, Population, Genome-Wide Association Study, Human Umbilical Vein Endothelial Cells, Humans, Hypertension, Life Style, Male, Middle Aged, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk Factors
Show Abstract · Added March 3, 2020
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
0 Communities
1 Members
0 Resources
MeSH Terms
Local ancestry transitions modify snp-trait associations.
Fish AE, Crawford DC, Capra JA, Bush WS
(2018) Pac Symp Biocomput 23: 424-435
MeSH Terms: Adult, African Continental Ancestry Group, Chromosomes, Human, Computational Biology, Epistasis, Genetic, European Continental Ancestry Group, Evolution, Molecular, Gene Frequency, Genetics, Population, Genome-Wide Association Study, Haplotypes, Humans, Linear Models, Models, Genetic, Polymorphism, Single Nucleotide, Recombination, Genetic
Show Abstract · Added March 14, 2018
Genomic maps of local ancestry identify ancestry transitions - points on a chromosome where recent recombination events in admixed individuals have joined two different ancestral haplotypes. These events bring together alleles that evolved within separate continential populations, providing a unique opportunity to evaluate the joint effect of these alleles on health outcomes. In this work, we evaluate the impact of genetic variants in the context of nearby local ancestry transitions within a sample of nearly 10,000 adults of African ancestry with traits derived from electronic health records. Genetic data was located using the Metabochip, and used to derive local ancestry. We develop a model that captures the effect of both single variants and local ancestry, and use it to identify examples where local ancestry transitions significantly interact with nearby variants to influence metabolic traits. In our most compelling example, we find that the minor allele of rs16890640 occuring on a European background with a downstream local ancestry transition to African ancestry results in significantly lower mean corpuscular hemoglobin and volume. This finding represents a new way of discovering genetic interactions, and is supported by molecular data that suggest changes to local ancestry may impact local chromatin looping.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua.
Weiskopf D, Grifoni A, Arlehamn CSL, Angelo M, Leary S, Sidney J, Frazier A, Mack SJ, Phillips E, Mallal S, Cerpas C, Balmaseda A, Harris E, Sette A
(2018) Hum Immunol 79: 1-2
MeSH Terms: Adult, Databases, Genetic, Dengue, Gene Frequency, Genetics, Population, Genotype, HLA-A Antigens, HLA-B Antigens, HLA-C Antigens, HLA-DP Antigens, HLA-DQ Antigens, HLA-DR Antigens, Histocompatibility Testing, Humans, Linkage Disequilibrium, Nicaragua, Sequence Analysis, DNA, T-Lymphocytes
Show Abstract · Added March 30, 2020
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on anonymized samples provided by 339 healthy adult blood bank donors in Managua, Nicaragua. The purpose of the study was to characterize allele frequencies in the local population to support studies of T cell immunity against pathogens, including Dengue virus. Deviations from Hardy Weinberg proportions were detected for all class II loci (HLA-DPB1, -DQA1, -DQB1 and -DRB1), and at the class I C locus, but not at the class I A and B loci. The genotype data will be available in the Allele Frequencies Net Database.
Copyright © 2017 American Society for Histocompatibility and Immunogenetics. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Population Stratification in Genetic Association Studies.
Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL
(2017) Curr Protoc Hum Genet 95: 1.22.1-1.22.23
MeSH Terms: Alleles, Chromosome Mapping, Evolution, Molecular, Gene Frequency, Genetic Association Studies, Genetics, Population, Humans, Linkage Disequilibrium, Models, Genetic, Models, Statistical, Quantitative Trait, Heritable
Show Abstract · Added March 3, 2020
Population stratification (PS) is a primary consideration in studies of genetic determinants of human traits. Failure to control for PS may lead to confounding, causing a study to fail for lack of significant results, or resources to be wasted following false-positive signals. Here, historical and current approaches for addressing PS when performing genetic association studies in human populations are reviewed. Methods for detecting the presence of PS, including global and local ancestry methods, are described. Also described are approaches for accounting for PS when calculating association statistics, such that measures of association are not confounded. Many traits are being examined for the first time in minority populations, which may inherently feature PS. © 2017 by John Wiley & Sons, Inc.
Copyright © 2017 John Wiley and Sons, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Evidence of selection on splicing-associated loci in human populations and relevance to disease loci mapping.
Gamazon ER, Konkashbaev A, Derks EM, Cox NJ, Lee Y
(2017) Sci Rep 7: 5980
MeSH Terms: Chromosome Mapping, Disease, Genetic Loci, Genetics, Population, Genome-Wide Association Study, Humans, Introns, Nucleotide Motifs, Polymorphism, Single Nucleotide, RNA Splicing, Selection, Genetic
Show Abstract · Added October 27, 2017
We performed a whole-genome scan of genetic variants in splicing regulatory elements (SREs) and evaluated the extent to which natural selection has shaped extant patterns of variation in SREs. We investigated the degree of differentiation of single nucleotide polymorphisms (SNPs) in SREs among human populations and applied long-range haplotype- and multilocus allelic differentiation-based methods to detect selection signatures. We describe an approach, sampling a large number of loci across the genome from functional classes and using the consensus from multiple tests, for identifying candidates for selection signals. SRE SNPs in various SNP functional classes show different patterns of population differentiation compared with their non-SRE counterparts. Intronic regions display a greater enrichment for extreme population differentiation among the potentially tissue-dependent transcript ratio quantitative trait loci (trQTLs) than SRE SNPs in general and includ outlier trQTLs for cross-population composite likelihood ratio, suggesting that incorporation of context annotation for regulatory variation may lead to improved detection of signature of selection on these loci. The proportion of extremely rare SNPs disrupting SREs is significantly higher in European than in African samples. The approach developed here will be broadly useful for studies of function and disease-associated variation in the human genome.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 100 Luo infants from the Boro area of Nyanza Province, Kenya.
Arlehamn CS, Copin R, Leary S, Mack SJ, Phillips E, Mallal S, Sette A, Blatner G, Siefers H, Ernst JD, TBRU-ASTRa Study Team
(2017) Hum Immunol 78: 325-326
MeSH Terms: Databases, Nucleic Acid, Gene Frequency, Genetics, Population, Genotype, HLA Antigens, Histocompatibility Testing, Humans, Infant, Kenya, Linkage Disequilibrium, Polymorphism, Genetic, Sequence Analysis, DNA
Show Abstract · Added March 30, 2020
One hundred healthy infants enrolled as controls in a tuberculosis vaccine study in Nyanza Province, Kenya provided anonymized samples for DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci. The purpose of the study was to characterize allele frequencies in the local population, to support studies of T cell immunity against pathogens, including Mycobacterium tuberculosis. There are no detectable deviations from Hardy Weinberg proportions for the HLA-B, -C, -DRB1, -DPB1, -DQA1 and -DQB1 loci. A minor deviation was detected at the HLA-A locus due to an excess of HLA-A*02:02, 29:02, 30:02, and 68:02 homozygotes. The genotype data are available in the Allele Frequencies Net Database under identifier 3393.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
The Relation Between Inflation in Type-I and Type-II Error Rate and Population Divergence in Genome-Wide Association Analysis of Multi-Ethnic Populations.
Derks EM, Zwinderman AH, Gamazon ER
(2017) Behav Genet 47: 360-368
MeSH Terms: Genetics, Population, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide
Show Abstract · Added April 13, 2017
Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F. In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.
0 Communities
1 Members
0 Resources
4 MeSH Terms
Translational Advances in the Field of Pulmonary Hypertension Molecular Medicine of Pulmonary Arterial Hypertension. From Population Genetics to Precision Medicine and Gene Editing.
Austin ED, West J, Loyd JE, Hemnes AR
(2017) Am J Respir Crit Care Med 195: 23-31
MeSH Terms: Forecasting, Gene Editing, Genetic Therapy, Genetics, Population, Humans, Hypertension, Pulmonary, Male, Precision Medicine, Translational Medical Research
Added February 21, 2017
0 Communities
2 Members
0 Resources
9 MeSH Terms
Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs.
Below JE, Parra EJ, Gamazon ER, Torres J, Krithika S, Candille S, Lu Y, Manichakul A, Peralta-Romero J, Duan Q, Li Y, Morris AP, Gottesman O, Bottinger E, Wang XQ, Taylor KD, Ida Chen YD, Rotter JI, Rich SS, Loos RJ, Tang H, Cox NJ, Cruz M, Hanis CL, Valladares-Salgado A
(2016) Sci Rep 6: 19429
MeSH Terms: European Continental Ancestry Group, Genetic Association Studies, Genetics, Population, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, Linkage Disequilibrium, Lipid Metabolism, Lipids, Mexico, Organ Specificity, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable
Show Abstract · Added April 13, 2017
We performed genome-wide meta-analysis of lipid traits on three samples of Mexican and Mexican American ancestry comprising 4,383 individuals, and followed up significant and highly suggestive associations in three additional Hispanic samples comprising 7,876 individuals. Genome-wide significant signals were observed in or near CELSR2, ZNF259/APOA5, KANK2/DOCK6 and NCAN/MAU2 for total cholesterol, LPL, ABCA1, ZNF259/APOA5, LIPC and CETP for HDL cholesterol, CELSR2, APOB and NCAN/MAU2 for LDL cholesterol, and GCKR, TRIB1, ZNF259/APOA5 and NCAN/MAU2 for triglycerides. Linkage disequilibrium and conditional analyses indicate that signals observed at ABCA1 and LIPC for HDL cholesterol and NCAN/MAU2 for triglycerides are independent of previously reported lead SNP associations. Analyses of lead SNPs from the European Global Lipids Genetics Consortium (GLGC) dataset in our Hispanic samples show remarkable concordance of direction of effects as well as strong correlation in effect sizes. A meta-analysis of the European GLGC and our Hispanic datasets identified five novel regions reaching genome-wide significance: two for total cholesterol (FN1 and SAMM50), two for HDL cholesterol (LOC100996634 and COPB1) and one for LDL cholesterol (LINC00324/CTC1/PFAS). The top meta-analysis signals were found to be enriched for SNPs associated with gene expression in a tissue-specific fashion, suggesting an enrichment of tissue-specific function in lipid-associated loci.
0 Communities
1 Members
0 Resources
15 MeSH Terms