Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 207

Publication Record

Connections

Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine.
Kimble JB, Malherbe DC, Meyer M, Gunn BM, Karim MM, Ilinykh PA, Iampietro M, Mohamed KS, Negi S, Gilchuk P, Huang K, Wolf YI, Braun W, Crowe JE, Alter G, Bukreyev A
(2019) J Virol 93:
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cell Line, Drug Combinations, Ebola Vaccines, Ebolavirus, Epitopes, Female, Ferrets, Genetic Vectors, Glycoproteins, Guinea Pigs, Hemorrhagic Fever, Ebola, Parainfluenza Virus 3, Human, Viral Envelope Proteins, Viral Vaccines
Show Abstract · Added March 31, 2019
Ebolaviruses Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) cause human disease with high case fatality rates. Experimental monovalent vaccines, which all utilize the sole envelope glycoprotein (GP), do not protect against heterologous ebolaviruses. Human parainfluenza virus type 3-vectored vaccines offer benefits, including needle-free administration and induction of mucosal responses in the respiratory tract. Multiple approaches were taken to induce broad protection against the three ebolaviruses. While GP consensus-based antigens failed to elicit neutralizing antibodies, polyvalent vaccine immunization induced neutralizing responses to all three ebolaviruses and protected animals from death and disease caused by EBOV, SUDV, and BDBV. As immunization with a cocktail of antigenically related antigens can skew the responses and change the epitope hierarchy, we performed comparative analysis of antibody repertoire and Fc-mediated protective mechanisms in animals immunized with monovalent versus polyvalent vaccines. Compared to sera from guinea pigs receiving the monovalent vaccines, sera from guinea pigs receiving the trivalent vaccine bound and neutralized EBOV and SUDV at equivalent levels and BDBV at only a slightly reduced level. Peptide microarrays revealed a preponderance of binding to amino acids 389 to 403, 397 to 415, and 477 to 493, representing three linear epitopes in the mucin-like domain known to induce a protective antibody response. Competition binding assays with monoclonal antibodies isolated from human ebolavirus infection survivors demonstrated that the immune sera block the binding of antibodies specific for the GP glycan cap, the GP1-GP2 interface, the mucin-like domain, and the membrane-proximal external region. Thus, administration of a cocktail of three ebolavirus vaccines induces a desirable broad antibody response, without skewing of the response toward preferential recognition of a single virus. The symptoms of the disease caused by the ebolaviruses Ebola, Bundibugyo, and Sudan are similar, and their areas of endemicity overlap. However, because of the limited antigenic relatedness of the ebolavirus glycoprotein (GP) used in all candidate vaccines against these viruses, they protect only against homologous and not against heterologous ebolaviruses. Therefore, a broadly specific pan-ebolavirus vaccine is required, and this might be achieved by administration of a cocktail of vaccines. The effects of cocktail administration of ebolavirus vaccines on the antibody repertoire remain unknown. Here, an in-depth analysis of the antibody responses to administration of a cocktail of human parainfluenza virus type 3-vectored vaccines against individual ebolaviruses was performed, which included analysis of binding to GP, neutralization of individual ebolaviruses, epitope specificity, Fc-mediated functions, and protection against the three ebolaviruses. The results demonstrated potent and balanced responses against individual ebolaviruses and no significant reduction of the responses compared to that induced by individual vaccines.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo.
O'Neil RT, Saha S, Veach RA, Welch RC, Woodard LE, Rooney CM, Wilson MH
(2018) Nat Commun 9: 1325
MeSH Terms: Adoptive Transfer, Animals, Cell Engineering, Cell- and Tissue-Based Therapy, DNA Transposable Elements, Erythropoietin, Gene Expression, Genetic Vectors, Hematopoiesis, Herpesvirus 4, Human, Humans, Mice, Ovalbumin, Receptors, Antigen, T-Cell, T-Lymphocytes, Transgenes, Vaccination
Show Abstract · Added September 24, 2018
A cell therapy platform permitting long-term delivery of peptide hormones in vivo would be a significant advance for patients with hormonal deficiencies. Here we report the utility of antigen-specific T lymphocytes as a regulatable peptide delivery platform for in vivo therapy. piggyBac transposon modification of murine cells with luciferase allows us to visualize T cells after adoptive transfer. Vaccination stimulates long-term T-cell engraftment, persistence, and transgene expression enabling detection of modified cells up to 300 days after adoptive transfer. We demonstrate adoptive transfer of antigen-specific T cells expressing erythropoietin (EPO) elevating the hematocrit in mice for more than 20 weeks. We extend our observations to human T cells demonstrating inducible EPO production from Epstein-Barr virus (EBV) antigen-specific T lymphocytes. Our results reveal antigen-specific T lymphocytes to be an effective delivery platform for therapeutic molecules such as EPO in vivo, with important implications for other diseases that require peptide therapy.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Kidney-specific transposon-mediated gene transfer in vivo.
Woodard LE, Cheng J, Welch RC, Williams FM, Luo W, Gewin LS, Wilson MH
(2017) Sci Rep 7: 44904
MeSH Terms: Acute Kidney Injury, Animals, DNA Transposable Elements, Erythropoietin, Gene Expression, Gene Expression Regulation, Gene Transfer Techniques, Genes, Reporter, Genetic Vectors, Hydrodynamics, Immunosuppressive Agents, Kidney, Male, Mice, Organ Specificity, Promoter Regions, Genetic, Transfection
Show Abstract · Added September 11, 2017
Methods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues. We observed heterogeneous, low-level transfection of the collecting duct, proximal tubule, distal tubule, interstitial cells, and rarely glomerular cells following injection. To assess renal injury, we performed the renal pelvis injections on uninephrectomised mice and found that their blood urea nitrogen was elevated at two days post-transfer but resolved within two weeks. Although luciferase expression quickly decreased following renal pelvis injection, the use of the piggyBac transposon system improved long-term expression. Immunosuppression with cyclophosphamide stabilised luciferase expression, suggesting immune clearance of the transfected cells occurs in immunocompetent animals. Injection of a transposon expressing erythropoietin raised the haematocrit, indicating that the developed injection technique can elicit a biologic effect in vivo. Hydrodynamic renal pelvis injection enables transposon mediated-kidney specific gene transfer in adult mice.
0 Communities
3 Members
1 Resources
17 MeSH Terms
Erythropoietin either Prevents or Exacerbates Retinal Damage from Eye Trauma Depending on Treatment Timing.
Bricker-Anthony C, D'Surney L, Lunn B, Hines-Beard J, Jo M, Bernardo-Colon A, Rex TS
(2017) Optom Vis Sci 94: 20-32
MeSH Terms: Animals, Blast Injuries, Cell Survival, Dependovirus, Disease Models, Animal, Erythropoietin, Eye Injuries, Ferritins, Genetic Therapy, Genetic Vectors, Green Fluorescent Proteins, In Situ Nick-End Labeling, Injections, Intramuscular, Injections, Intraperitoneal, Mice, Mice, Inbred BALB C, Mice, Inbred DBA, NADPH Oxidases, Oxidative Stress, Polymerase Chain Reaction, Retina, Retinal Diseases, Time Factors, Vision Disorders, Wounds, Nonpenetrating
Show Abstract · Added April 2, 2019
PURPOSE - Erythropoietin (EPO) is a promising neuroprotective agent and is currently in Phase III clinical trials for the treatment of traumatic brain injury. The goal of this study was to determine if EPO is also protective in traumatic eye injury.
METHODS - The left eyes of anesthetized DBA/2J or Balb/c mice were exposed to a single 26 psi overpressure air-wave while the rest of the body was shielded. DBA/2J mice were given intraperitoneal injections of EPO or buffer and analyses were performed at 3 or 7 days post-blast. Balb/c mice were given intramuscular injections of rAAV.EpoR76E or rAAV.eGFP either pre- or post-blast and analyses were performed at 1 month post-blast.
RESULTS - EPO had a bimodal effect on cell death, glial reactivity, and oxidative stress. All measures were increased at 3 days post-blast and decreased at 7-days post-blast. Increased retinal ferritin and NADPH oxygenases were detected in retinas from EPO-treated mice. The gene therapy approach protected against axon degeneration, cell death, and oxidative stress when given after blast, but not before.
CONCLUSIONS - Systemic, exogenous EPO and EPO-R76E protects the retina after trauma even when initiation of treatment is delayed by up to 3 weeks. Systemic treatment with EPO or EPO-R76E beginning before or soon after trauma may exacerbate protective effects of EPO within the retina as a result of increased iron levels from erythropoiesis and, thus, increased oxidative stress within the retina. This is likely overcome with time as a result of an increase in levels of antioxidant enzymes. Either intraocular delivery of EPO or treatment with non-erythropoietic forms of EPO may be more efficacious.
0 Communities
1 Members
0 Resources
MeSH Terms
Mammalian retinal Müller cells have circadian clock function.
Xu L, Ruan G, Dai H, Liu AC, Penn J, McMahon DG
(2016) Mol Vis 22: 275-83
MeSH Terms: Animals, CLOCK Proteins, Cells, Cultured, Circadian Clocks, Circadian Rhythm, Ependymoglial Cells, Female, Fluorescent Antibody Technique, Indirect, Genetic Vectors, Humans, Lentivirus, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, RNA, Small Interfering, Transfection
Show Abstract · Added March 18, 2020
PURPOSE - To test whether Müller glia of the mammalian retina have circadian rhythms.
METHODS - We used Müller glia cultures isolated from mouse lines or from humans and bioluminescent reporters of circadian clock genes to monitor molecular circadian rhythms. The clock gene dependence of the Müller cell rhythms was tested using clock gene knockout mouse lines or with siRNA for specific clock genes.
RESULTS - We demonstrated that retinal Müller glia express canonical circadian clock genes, are capable of sustained circadian oscillations in isolation from other cell types, and exhibit unique features of their molecular circadian clock compared to the retina as a whole. Mouse and human Müller cells demonstrated circadian clock function; however, they exhibited species-specific differences in the gene dependence of their clocks.
CONCLUSIONS - Müller cells are the first mammalian retinal cell type in which sustained circadian rhythms have been demonstrated in isolation from other retinal cells.
0 Communities
1 Members
0 Resources
MeSH Terms
Virus-mediated EpoR76E Therapy Slows Optic Nerve Axonopathy in Experimental Glaucoma.
Bond WS, Hines-Beard J, GoldenMerry YL, Davis M, Farooque A, Sappington RM, Calkins DJ, Rex TS
(2016) Mol Ther 24: 230-239
MeSH Terms: Animals, Axons, Dependovirus, Disease Models, Animal, Erythropoietin, Genetic Therapy, Genetic Vectors, Glaucoma, Humans, Intraocular Pressure, Mice, Mutation, Optic Nerve
Show Abstract · Added February 4, 2016
Glaucoma, a common cause of blindness, is currently treated by intraocular pressure (IOP)-lowering interventions. However, this approach is insufficient to completely prevent vision loss. Here, we evaluate an IOP-independent gene therapy strategy using a modified erythropoietin, EPO-R76E, which has reduced erythropoietic function. We used two models of glaucoma, the murine microbead occlusion model and the DBA/2J mouse. Systemic recombinant adeno-associated virus-mediated gene delivery of EpoR76E (rAAV.EpoR76E) was performed concurrent with elevation of IOP. Axon structure and active anterograde transport were preserved in both models. Vision, as determined by the flash visual evoked potential, was preserved in the DBA/2J. These results show that systemic EpoR76E gene therapy protects retinal ganglion cells from glaucomatous degeneration in two different models. This suggests that EPO targets a component of the neurodegenerative pathway that is common to both models. The efficacy of rAAV.EpoR76E delivered at onset of IOP elevation supports clinical relevance of this treatment.
0 Communities
3 Members
0 Resources
13 MeSH Terms
piggyBac-ing models and new therapeutic strategies.
Woodard LE, Wilson MH
(2015) Trends Biotechnol 33: 525-33
MeSH Terms: Animals, Baculoviridae, Genetic Engineering, Genetic Vectors, Genome, Humans, Mice
Show Abstract · Added July 28, 2015
DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.
Published by Elsevier Ltd.
0 Communities
2 Members
0 Resources
7 MeSH Terms
Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing.
Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MM
(2015) Genes Dev 29: 1576-85
MeSH Terms: Adenocarcinoma, Animals, Carcinoma, Pancreatic Ductal, Clustered Regularly Interspaced Short Palindromic Repeats, Disease Models, Animal, Gene Expression Regulation, Neoplastic, Genetic Vectors, Genome, Humans, Lentivirus, Mice, Mice, Inbred C57BL, Mice, Transgenic
Show Abstract · Added September 7, 2016
Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer.
© 2015 Chiou et al.; Published by Cold Spring Harbor Laboratory Press.
0 Communities
0 Members
0 Resources
13 MeSH Terms
Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.
Yin L, Maddison LA, Li M, Kara N, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen W
(2015) Genetics 200: 431-41
MeSH Terms: Animals, Animals, Genetically Modified, CRISPR-Cas Systems, Gene Expression, Gene Order, Gene Silencing, Gene Targeting, Genetic Vectors, Glucose, Hypopigmentation, Mutagenesis, Phenotype, RNA, Guide, Transgenes, Zebrafish
Show Abstract · Added July 23, 2015
Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward.
Copyright © 2015 by the Genetics Society of America.
0 Communities
2 Members
0 Resources
15 MeSH Terms
MiRNA inhibition in tissue engineering and regenerative medicine.
Beavers KR, Nelson CE, Duvall CL
(2015) Adv Drug Deliv Rev 88: 123-37
MeSH Terms: Bone and Bones, Cicatrix, Genetic Vectors, Humans, Inflammation, Kidney, Liver, MicroRNAs, Muscle, Skeletal, Myocardium, Neovascularization, Pathologic, RNA, Messenger, Regeneration, Regenerative Medicine, Tissue Engineering, Tissue Scaffolds, Wound Healing
Show Abstract · Added March 14, 2018
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Copyright © 2014 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms