Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 789

Publication Record

Connections

Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits.
Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM
(2019) Nat Genet 51: 933-940
MeSH Terms: Algorithms, Computational Biology, Gene Expression Profiling, Gene Expression Regulation, Gene Regulatory Networks, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Mental Disorders, Organ Specificity, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Transcriptome
Show Abstract · Added July 17, 2019
The genetic architecture of psychiatric disorders is characterized by a large number of small-effect variants located primarily in non-coding regions, suggesting that the underlying causal effects may influence disease risk by modulating gene expression. We provide comprehensive analyses using transcriptome data from an unprecedented collection of tissues to gain pathophysiological insights into the role of the brain, neuroendocrine factors (adrenal gland) and gastrointestinal systems (colon) in psychiatric disorders. In each tissue, we perform PrediXcan analysis and identify trait-associated genes for schizophrenia (n associations = 499; n unique genes = 275), bipolar disorder (n associations = 17; n unique genes = 13), attention deficit hyperactivity disorder (n associations = 19; n unique genes = 12) and broad depression (n associations = 41; n unique genes = 31). Importantly, both PrediXcan and summary-data-based Mendelian randomization/heterogeneity in dependent instruments analyses suggest potentially causal genes in non-brain tissues, showing the utility of these tissues for mapping psychiatric disease genetic predisposition. Our analyses further highlight the importance of joint tissue approaches as 76% of the genes were detected only in difficult-to-acquire tissues.
0 Communities
1 Members
0 Resources
MeSH Terms
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Azzollini J, Balmaña J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Borg A, Brauch H, Brenner H, Broeks A, Burwinkel B, Caldés T, Caligo MA, Campa D, Campbell I, Canzian F, Carter J, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, Dennis J, Devilee P, Diez O, Dörk T, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Friedman E, Frost D, Gabrielson M, Gago-Dominguez M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hoover RN, Hopper JL, Hulick PJ, Humphreys K, Imyanitov EN, ABCTB Investigators, HEBON Investigators, BCFR Investigators, Isaacs C, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Karlan BY, Khusnutdinova E, Kiiski JI, Ko YD, Jones ME, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leslie G, Lester J, Lesueur F, Lindström S, Long J, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Margolin S, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Nussbaum RL, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Pharoah PDP, Plaseska-Karanfilska D, Poppe B, Presneau N, Radice P, Rantala J, Rennert G, Risch HA, Saloustros E, Sanden K, Sawyer EJ, Schmidt MK, Schmutzler RK, Sharma P, Shu XO, Simard J, Singer CF, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Wang Q, Wappenschmidt B, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Kraft P, Antoniou AC, Zheng W, Easton DF, Milne RL, Beesley J, Chenevix-Trench G
(2019) Nat Commun 10: 1741
MeSH Terms: Breast Neoplasms, Female, Gene Expression Profiling, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Quantitative Trait Loci
Show Abstract · Added July 17, 2019
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
0 Communities
1 Members
0 Resources
MeSH Terms
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk.
Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardiñas AF, Rajagopal VM, Als TD, T Nguyen H, Girdhar K, Boocock J, Roussos P, Fromer M, Kramer R, Domenici E, Gamazon ER, Purcell S, CommonMind Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, iPSYCH-GEMS Schizophrenia Working Group, Demontis D, Børglum AD, Walters JTR, O'Donovan MC, Sullivan P, Owen MJ, Devlin B, Sieberts SK, Cox NJ, Im HK, Sklar P, Stahl EA
(2019) Nat Genet 51: 659-674
MeSH Terms: Brain, Case-Control Studies, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk, Schizophrenia, Transcriptome
Show Abstract · Added July 17, 2019
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
0 Communities
1 Members
0 Resources
MeSH Terms
Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.
Tin A, Li Y, Brody JA, Nutile T, Chu AY, Huffman JE, Yang Q, Chen MH, Robinson-Cohen C, Macé A, Liu J, Demirkan A, Sorice R, Sedaghat S, Swen M, Yu B, Ghasemi S, Teumer A, Vollenweider P, Ciullo M, Li M, Uitterlinden AG, Kraaij R, Amin N, van Rooij J, Kutalik Z, Dehghan A, McKnight B, van Duijn CM, Morrison A, Psaty BM, Boerwinkle E, Fox CS, Woodward OM, Köttgen A
(2018) Nat Commun 9: 4228
MeSH Terms: Exome, Genetic Predisposition to Disease, Glucose Transport Proteins, Facilitative, Humans, Kidney Function Tests, Meta-Analysis as Topic, Organic Anion Transporters, Organic Cation Transport Proteins, Protein Structure, Secondary, Uric Acid
Show Abstract · Added January 3, 2019
Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10) and SLC2A9 (p = 4.5 × 10). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.
0 Communities
1 Members
0 Resources
MeSH Terms
Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes.
Triolo TM, Fouts A, Pyle L, Yu L, Gottlieb PA, Steck AK, Type 1 Diabetes TrialNet Study Group
(2019) Diabetes Care 42: 192-199
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Mellitus, Type 1, Disease Progression, Diseases in Twins, Environment, Female, Genetic Predisposition to Disease, Glutamate Decarboxylase, Humans, Insulin, Islets of Langerhans, Male, Mass Screening, Risk Factors, Seroepidemiologic Studies, Siblings, Twins, Twins, Dizygotic, Twins, Monozygotic, Young Adult
Show Abstract · Added August 15, 2018
OBJECTIVE - There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings.
RESEARCH DESIGN AND METHODS - Subjects from the TrialNet Pathway to Prevention Study ( = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years.
RESULTS - At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all < 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody-positive, 13% for single autoantibody-positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody-positive, 12% for single autoantibody-positive, and 0.5% for initially autoantibody-negative subjects.
CONCLUSIONS - Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody-positive identical twins and multiple autoantibody-positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
25 MeSH Terms
A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk.
Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA, Type 1 Diabetes TrialNet Study Group
(2018) Diabetes Care 41: 1887-1894
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Complications, Diabetes Mellitus, Type 1, Disease Progression, Female, Genetic Predisposition to Disease, Genotype, HLA-DQ Antigens, Humans, Infant, Islets of Langerhans, Male, Middle Aged, Polymorphism, Single Nucleotide, Prognosis, Risk Factors, Young Adult
Show Abstract · Added July 23, 2018
OBJECTIVE - We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals.
RESEARCH DESIGN AND METHODS - We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients' relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2-51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial-Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables.
RESULTS - Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06-1.6; = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS >0.295, 95% CI 1.47-3.51; = 0.0002).
CONCLUSIONS - The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Exploring the role of low-frequency and rare exonic variants in alcohol and tobacco use.
Marees AT, Hammerschlag AR, Bastarache L, de Kluiver H, Vorspan F, van den Brink W, Smit DJ, Denys D, Gamazon ER, Li-Gao R, Breetvelt EJ, de Groot MCH, Galesloot TE, Vermeulen SH, Poppelaars JL, Souverein PC, Keeman R, de Mutsert R, Noordam R, Rosendaal FR, Stringa N, Mook-Kanamori DO, Vaartjes I, Kiemeney LA, den Heijer M, van Schoor NM, Klungel OH, Maitland-Van der Zee AH, Schmidt MK, Polderman TJC, van der Leij AR, Posthuma D, Derks EM
(2018) Drug Alcohol Depend 188: 94-101
MeSH Terms: Alcohol Drinking, Alcoholism, Cohort Studies, Exons, Female, Genetic Predisposition to Disease, Genetic Variation, Humans, Male, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Receptors, Nicotinic, Risk Factors, Tobacco Use, Tobacco Use Disorder
Show Abstract · Added May 26, 2018
BACKGROUND - Alcohol and tobacco use are heritable phenotypes. However, only a small number of common genetic variants have been identified, and common variants account for a modest proportion of the heritability. Therefore, this study aims to investigate the role of low-frequency and rare variants in alcohol and tobacco use.
METHODS - We meta-analyzed ExomeChip association results from eight discovery cohorts and included 12,466 subjects and 7432 smokers in the analysis of alcohol consumption and tobacco use, respectively. The ExomeChip interrogates low-frequency and rare exonic variants, and in addition a small pool of common variants. We investigated top variants in an independent sample in which ICD-9 diagnoses of "alcoholism" (N = 25,508) and "tobacco use disorder" (N = 27,068) had been assessed. In addition to the single variant analysis, we performed gene-based, polygenic risk score (PRS), and pathway analyses.
RESULTS - The meta-analysis did not yield exome-wide significant results. When we jointly analyzed our top results with the independent sample, no low-frequency or rare variants reached significance for alcohol consumption or tobacco use. However, two common variants that were present on the ExomeChip, rs16969968 (p = 2.39 × 10) and rs8034191 (p = 6.31 × 10) located in CHRNA5 and AGPHD1 at 15q25.1, showed evidence for association with tobacco use.
DISCUSSION - Low-frequency and rare exonic variants with large effects do not play a major role in alcohol and tobacco use, nor does the aggregate effect of ExomeChip variants. However, our results confirmed the role of the CHRNA5-CHRNA3-CHRNB4 cluster of nicotinic acetylcholine receptor subunit genes in tobacco use.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment.
Lewis TR, Shelton EL, Van Driest SL, Kannankeril PJ, Reese J
(2018) Semin Fetal Neonatal Med 23: 232-238
MeSH Terms: Acetaminophen, Animals, Disease Models, Animal, Ductus Arteriosus, Patent, Genetic Predisposition to Disease, Humans, Ibuprofen, Indomethacin, Infant, Newborn, Infant, Premature, Pharmacogenetics
Show Abstract · Added March 31, 2018
Patent ductus arteriosus (PDA) is a frequent, complex, and difficult to treat clinical syndrome among preterm infants in the neonatal intensive care unit. In addition to known clinical risk factors, there are emerging data about genetic predisposition to PDA in both animal and human models. Clinical response and toxicity from drugs used to treat PDA are highly variable. Developmental and genetic aspects of pharmacokinetics and pharmacodynamics influence exposure and response to pharmacologic therapies. Given the variable efficacy and toxicity of known drug therapies, novel therapeutic targets for PDA treatment offer the promise of precision medicine. This review addresses the known genetic contributions to prolonged ductal patency, variability in response to drug therapy for PDA, and potential novel drug targets for future PDA treatment discovery.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank.
Li X, Meng X, Spiliopoulou A, Timofeeva M, Wei WQ, Gifford A, Shen X, He Y, Varley T, McKeigue P, Tzoulaki I, Wright AF, Joshi P, Denny JC, Campbell H, Theodoratou E
(2018) Ann Rheum Dis 77: 1039-1047
MeSH Terms: Adult, Arthritis, Autoimmune Diseases, Biological Specimen Banks, Celiac Disease, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Gout, Humans, Hypertension, Male, Mendelian Randomization Analysis, Middle Aged, Multimorbidity, Myocardial Infarction, Prognosis, Risk Assessment, United Kingdom, Uric Acid
Show Abstract · Added March 14, 2018
OBJECTIVES - We aimed to investigate the role of serum uric acid (SUA) level in a broad spectrum of disease outcomes using data for 120 091 individuals from UK Biobank.
METHODS - We performed a phenome-wide association study (PheWAS) to identify disease outcomes associated with SUA genetic risk loci. We then implemented conventional Mendelianrandomisation (MR) analysis to investigate the causal relevance between SUA level and disease outcomes identified from PheWAS. We next applied MR Egger analysis to detect and account for potential pleiotropy, which conventional MR analysis might mistake for causality, and used the HEIDI (heterogeneity in dependent instruments) test to remove cross-phenotype associations that were likely due to genetic linkage.
RESULTS - Our PheWAS identified 25 disease groups/outcomes associated with SUA genetic risk loci after multiple testing correction (P<8.57e-05). Our conventional MR analysis implicated a causal role of SUA level in three disease groups: inflammatory polyarthropathies (OR=1.22, 95% CI 1.11 to 1.34), hypertensive disease (OR=1.08, 95% CI 1.03 to 1.14) and disorders of metabolism (OR=1.07, 95% CI 1.01 to 1.14); and four disease outcomes: gout (OR=4.88, 95% CI 3.91 to 6.09), essential hypertension (OR=1.08, 95% CI 1.03 to 1.14), myocardial infarction (OR=1.16, 95% CI 1.03 to 1.30) and coeliac disease (OR=1.41, 95% CI 1.05 to 1.89). After balancing pleiotropic effects in MR Egger analysis, only gout and its encompassing disease group of inflammatory polyarthropathies were considered to be causally associated with SUA level. Our analysis highlighted a locus () that may influence SUA level and multiple cardiovascular and autoimmune diseases via pleiotropy.
CONCLUSIONS - Elevated SUA level is convincing to cause gout and inflammatory polyarthropathies, and might act as a marker for the wider range of diseases with which it associates. Our findings support further investigation on the clinical relevance of SUA level with cardiovascular, metabolic, autoimmune and respiratory diseases.
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
0 Communities
1 Members
0 Resources
20 MeSH Terms
An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
Zhao J, Cheng F, Jia P, Cox N, Denny JC, Zhao Z
(2018) Genome Med 10: 7
MeSH Terms: Gene Regulatory Networks, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Genomics, Humans, Molecular Sequence Annotation, Organ Specificity, Phenotype, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Transcription Factors
Show Abstract · Added March 14, 2018
BACKGROUND - Genome-phenome studies have identified thousands of variants that are statistically associated with disease or traits; however, their functional roles are largely unclear. A comprehensive investigation of regulatory mechanisms and the gene regulatory networks between phenome-wide association study (PheWAS) and genome-wide association study (GWAS) is needed to identify novel regulatory variants contributing to risk for human diseases.
METHODS - In this study, we developed an integrative functional genomics framework that maps 215,107 significant single nucleotide polymorphism (SNP) traits generated from the PheWAS Catalog and 28,870 genome-wide significant SNP traits collected from the GWAS Catalog into a global human genome regulatory map via incorporating various functional annotation data, including transcription factor (TF)-based motifs, promoters, enhancers, and expression quantitative trait loci (eQTLs) generated from four major functional genomics databases: FANTOM5, ENCODE, NIH Roadmap, and Genotype-Tissue Expression (GTEx). In addition, we performed a tissue-specific regulatory circuit analysis through the integration of the identified regulatory variants and tissue-specific gene expression profiles in 7051 samples across 32 tissues from GTEx.
RESULTS - We found that the disease-associated loci in both the PheWAS and GWAS Catalogs were significantly enriched with functional SNPs. The integration of functional annotations significantly improved the power of detecting novel associations in PheWAS, through which we found a number of functional associations with strong regulatory evidence in the PheWAS Catalog. Finally, we constructed tissue-specific regulatory circuits for several complex traits: mental diseases, autoimmune diseases, and cancer, via exploring tissue-specific TF-promoter/enhancer-target gene interaction networks. We uncovered several promising tissue-specific regulatory TFs or genes for Alzheimer's disease (e.g. ZIC1 and STX1B) and asthma (e.g. CSF3 and IL1RL1).
CONCLUSIONS - This study offers powerful tools for exploring the functional consequences of variants generated from genome-phenome association studies in terms of their mechanisms on affecting multiple complex diseases and traits.
0 Communities
2 Members
0 Resources
12 MeSH Terms