, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 113

Publication Record

Connections

Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway.
Gobert AP, Latour YL, Asim M, Finley JL, Verriere TG, Barry DP, Milne GL, Luis PB, Schneider C, Rivera ES, Lindsey-Rose K, Schey KL, Delgado AG, Sierra JC, Piazuelo MB, Wilson KT
(2019) mBio 10:
MeSH Terms: Animals, Bacteria, Gene Silencing, Helicobacter pylori, Histones, Humans, Immune Evasion, Immunity, Innate, Immunoglobulins, Macrophages, Male, Metabolic Networks and Pathways, Mice, Mice, Inbred C57BL, Nitric Oxide Synthase Type II, Phosphatidylinositol 3-Kinases, Polyamines, RAW 264.7 Cells, Spermidine, Spermine, Sulfur, Transcription Factors
Show Abstract · Added November 1, 2019
The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of -adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape. Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.
0 Communities
2 Members
0 Resources
22 MeSH Terms
Loss of MYO5B Leads to Reductions in Na Absorption With Maintenance of CFTR-Dependent Cl Secretion in Enterocytes.
Engevik AC, Kaji I, Engevik MA, Meyer AR, Weis VG, Goldstein A, Hess MW, Müller T, Koepsell H, Dudeja PK, Tyska M, Huber LA, Shub MD, Ameen N, Goldenring JR
(2018) Gastroenterology 155: 1883-1897.e10
MeSH Terms: Animals, Aquaporins, Chlorides, Cystic Fibrosis Transmembrane Conductance Regulator, Duodenum, Enterocytes, Gene Silencing, Humans, Intestinal Mucosa, Intestines, Malabsorption Syndromes, Mice, Mice, Knockout, Microvilli, Mucolipidoses, Myosin Type V, Protein Transport, Sodium-Glucose Transporter 1, Sodium-Hydrogen Exchanger 3, Sodium-Hydrogen Exchangers, Sucrase-Isomaltase Complex, Tamoxifen
Show Abstract · Added February 7, 2019
BACKGROUND & AIMS - Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters.
METHODS - We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCre;Myo5b mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry.
RESULTS - Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCre;Myo5b mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCre;Myo5b mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCre;Myo5b mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity.
CONCLUSIONS - Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.
Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
MeSH Terms
Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue.
Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM
(2019) Tissue Eng Part A 25: 416-426
MeSH Terms: Actin Cytoskeleton, Actins, Animals, Blood Vessels, Calcium, Gene Silencing, Heat-Shock Proteins, Humans, Micelles, Muscle Contraction, Muscle, Smooth, Nanoparticles, Nanotechnology, Peptides, Polymerization, RNA, Small Interfering, Rats, Signal Transduction, Static Electricity
Show Abstract · Added April 10, 2019
IMPACT STATEMENT - Subarachnoid hemorrhage (SAH) is associated with vasospasm that is refractory to traditional vasodilators, and inhibition of vasospasm after SAH remains a large unmet clinical need. SAH causes changes in the phosphorylation state of the small heat shock proteins (HSPs), HSP20 and HSP27, in the vasospastic vessels. In this study, the levels of HSP27 and HSP20 were manipulated using nanotechnology to mimic the intracellular phenotype of SAH-induced vasospasm, and the effect of this manipulation was tested on vasomotor responses in intact tissues. This work provides insight into potential therapeutic targets for the development of more effective treatments for SAH induced vasospasm.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas.
Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, Liu Y, Akbani R, Feng B, Donehower LA, Miller C, Shen Y, Karimi M, Chen H, Kim P, Jia P, Shinbrot E, Zhang S, Liu J, Hu H, Bailey MH, Yau C, Wolf D, Zhao Z, Weinstein JN, Li L, Ding L, Mills GB, Laird PW, Wheeler DA, Shmulevich I, Cancer Genome Atlas Research Network, Monnat RJ, Xiao Y, Wang C
(2018) Cell Rep 23: 239-254.e6
MeSH Terms: Cell Line, Tumor, DNA Damage, Gene Silencing, Genome, Human, Humans, Loss of Heterozygosity, Machine Learning, Mutation, Neoplasms, Recombinational DNA Repair, Tumor Suppressor Proteins
Show Abstract · Added October 30, 2019
DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing.
Sarett SM, Werfel TA, Lee L, Jackson MA, Kilchrist KV, Brantley-Sieders D, Duvall CL
(2017) Proc Natl Acad Sci U S A 114: E6490-E6497
MeSH Terms: Cell Line, Tumor, Gene Silencing, Humans, Neoplasms, RNA, Small Interfering, Serum Albumin, Human
Show Abstract · Added March 14, 2018
Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L), which rapidly binds albumin in situ. siRNA-L, in comparison with unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life, an 8.6-fold increase in bioavailability, and reduced renal accumulation. Benchmarked against leading commercial siRNA nanocarrier in vivo jetPEI, siRNA-L achieved 19-fold greater tumor accumulation and 46-fold increase in per-tumor-cell uptake in a mouse orthotopic model of human triple-negative breast cancer. siRNA-L penetrated tumor tissue rapidly and homogeneously; 30 min after i.v. injection, siRNA-L achieved uptake in 99% of tumor cells, compared with 60% for jetPEI. Remarkably, siRNA-L achieved a tumor:liver accumulation ratio >40:1 vs. <3:1 for jetPEI. The improved pharmacokinetic properties of siRNA-L facilitated significant tumor gene silencing for 7 d after two i.v. doses. Proof-of-concept was extended to a patient-derived xenograft model, in which jetPEI tumor accumulation was reduced fourfold relative to the same formulation in the orthotopic model. The siRNA-L tumor accumulation diminished only twofold, suggesting that the superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical situations. These data reveal the immense promise of in situ albumin targeting for development of translational, carrier-free RNAi-based cancer therapies.
0 Communities
1 Members
0 Resources
6 MeSH Terms
HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning.
Ferrari A, Longo R, Fiorino E, Silva R, Mitro N, Cermenati G, Gilardi F, Desvergne B, Andolfo A, Magagnotti C, Caruso D, Fabiani E, Hiebert SW, Crestani M
(2017) Nat Commun 8: 93
MeSH Terms: Adipocytes, Adipose Tissue, Brown, Adipose Tissue, White, Animals, Cell Line, Diet, High-Fat, Gene Expression Regulation, Gene Silencing, Histone Deacetylases, Lipid Metabolism, Male, Mice, Mice, Knockout
Show Abstract · Added February 7, 2019
White adipose tissue (WAT) can undergo a phenotypic switch, known as browning, in response to environmental stimuli such as cold. Post-translational modifications of histones have been shown to regulate cellular energy metabolism, but their role in white adipose tissue physiology remains incompletely understood. Here we show that histone deacetylase 3 (HDAC3) regulates WAT metabolism and function. Selective ablation of Hdac3 in fat switches the metabolic signature of WAT by activating a futile cycle of de novo fatty acid synthesis and β-oxidation that potentiates WAT oxidative capacity and ultimately supports browning. Specific ablation of Hdac3 in adipose tissue increases acetylation of enhancers in Pparg and Ucp1 genes, and of putative regulatory regions of the Ppara gene. Our results unveil HDAC3 as a regulator of WAT physiology, which acts as a molecular brake that inhibits fatty acid metabolism and WAT browning.Histone deacetylases, such as HDAC3, have been shown to alter cellular metabolism in various tissues. Here the authors show that HDAC3 regulates WAT metabolism by activating a futile cycle of fatty acid synthesis and oxidation, which supports WAT browning.
1 Communities
0 Members
0 Resources
MeSH Terms
Blocking Zebrafish MicroRNAs with Morpholinos.
Flynt AS, Rao M, Patton JG
(2017) Methods Mol Biol 1565: 59-78
MeSH Terms: Animals, Electroporation, Gene Expression Regulation, Gene Silencing, Gene Transfer Techniques, MicroRNAs, Microinjections, Morpholinos, Oligonucleotides, Antisense, Retina, Zebrafish
Show Abstract · Added August 4, 2017
Antisense morpholino oligonucleotides have been commonly used in zebrafish to inhibit mRNA function, either by inhibiting pre-mRNA splicing or by blocking translation initiation. Even with the advent of genome editing by CRISP/Cas9 technology, morpholinos provide a useful and rapid tool to knockdown gene expression. This is especially true when dealing with multiple alleles and large gene families where genetic redundancy can complicate knockout of all family members. miRNAs are small noncoding RNAs that are often encoded in gene families and can display extensive genetic redundancy. This redundancy, plus their small size which can limit targeting by CRISPR/Cas9, makes morpholino-based strategies particularly attractive for inhibition of miRNA function. We provide the rationale, background, and methods to inhibit miRNA function with antisense morpholinos during early development and in the adult retina in zebrafish.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Development of a RSK Inhibitor as a Novel Therapy for Triple-Negative Breast Cancer.
Ludwik KA, Campbell JP, Li M, Li Y, Sandusky ZM, Pasic L, Sowder ME, Brenin DR, Pietenpol JA, O'Doherty GA, Lannigan DA
(2016) Mol Cancer Ther 15: 2598-2608
MeSH Terms: Animals, Antineoplastic Agents, Benzopyrans, Cell Line, Tumor, Cell Movement, Cell Proliferation, Cell Survival, Disease Models, Animal, Dose-Response Relationship, Drug, Enzyme Activation, Female, Gene Silencing, Humans, Mice, Monosaccharides, Neoplasm Metastasis, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Ribosomal Protein S6 Kinases, 90-kDa, Triple Negative Breast Neoplasms, Tumor Burden, Xenograft Model Antitumor Assays
Show Abstract · Added September 14, 2016
Metastatic breast cancer is an incurable disease and identification of novel therapeutic opportunities is vital. Triple-negative breast cancer (TNBC) frequently metastasizes and high levels of activated p90RSK (RSK), a downstream MEK-ERK1/2 effector, are found in TNBC. We demonstrate, using direct pharmacologic and genetic inhibition of RSK1/2, that these kinases contribute to the TNBC metastatic process in vivo Kinase profiling showed that RSK1 and RSK2 are the predominant kinases targeted by the new inhibitor, which is based on the natural product SL0101. Further evidence for selectivity was provided by the observations that silencing RSK1 and RSK2 eliminated the ability of the analogue to further inhibit survival or proliferation of a TNBC cell line. In vivo, the new derivative was as effective as the FDA-approved MEK inhibitor trametinib in reducing the establishment of metastatic foci. Importantly, inhibition of RSK1/2 did not result in activation of AKT, which is known to limit the efficacy of MEK inhibitors in the clinic. Our results demonstrate that RSK is a major contributor to the TNBC metastatic program and provide preclinical proof-of-concept for the efficacy of the novel SL0101 analogue in vivo Mol Cancer Ther; 15(11); 2598-608. ©2016 AACR.
©2016 American Association for Cancer Research.
1 Communities
3 Members
0 Resources
22 MeSH Terms
Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing.
Sarett SM, Werfel TA, Chandra I, Jackson MA, Kavanaugh TE, Hattaway ME, Giorgio TD, Duvall CL
(2016) Biomaterials 97: 122-32
MeSH Terms: Animals, Cell Line, Tumor, Drug Carriers, Female, Gene Silencing, Humans, Hydrophobic and Hydrophilic Interactions, Mice, Nude, Neoplasms, Palmitic Acid, Polyethylene Glycols, Polymers, RNA, Small Interfering, Reproducibility of Results, Tissue Distribution
Show Abstract · Added March 14, 2018
Formation of stable, long-circulating siRNA polyplexes is a significant challenge in translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with balanced cationic and hydrophobic content in the core relative to the analogous polyplexes formed with unmodified siRNA, si-NPs. Hydrophobized siPA loaded into the NPs at a lower charge ratio (N(+):P(-)) relative to unmodified siRNA, and siPA-NPs had superior resistance to siRNA cargo unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and serum. In vitro, siPA-NPs increased uptake in MDA-MB-231 breast cancer cells (100% positive cells vs. 60% positive cells) but exhibited equivalent silencing of the model gene luciferase relative to si-NPs. In vivo in a murine model, the circulation half-life of intravenously-injected siPA-NPs was double that of si-NPs, resulting in a >2-fold increase in siRNA biodistribution to orthotopic MDA-MB-231 mammary tumors. The increased circulation half-life of siPA-NPs was dependent upon the hydrophobic interactions of the siRNA and the NP core component and not just siRNA hydrophobization, as siPA did not contribute to improved circulation time relative to unmodified siRNA when delivered using polyplexes with a fully cationic core. Intravenous delivery of siPA-NPs also achieved significant silencing of the model gene luciferase in vivo (∼40% at 24 h after one treatment and ∼60% at 48 h after two treatments) in the murine MDA-MB-231 tumor model, while si-NPs only produced a significant silencing effect after two treatments. These data suggest that stabilization of PEGylated siRNA polyplexes through a combination of hydrophobic and electrostatic interactions between siRNA cargo and the polymeric carrier improves in vivo pharmacokinetics and tumor gene silencing relative to conventional formulations that are stabilized solely by electrostatic interactions.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer.
Murray-Stewart T, Sierra JC, Piazuelo MB, Mera RM, Chaturvedi R, Bravo LE, Correa P, Schneider BG, Wilson KT, Casero RA
(2016) Oncogene 35: 5480-5488
MeSH Terms: 3' Untranslated Regions, Biopsy, DNA Methylation, Down-Regulation, Epigenesis, Genetic, Gastritis, Gene Expression Regulation, Gene Silencing, Helicobacter Infections, Helicobacter pylori, Humans, MicroRNAs, Oxidoreductases Acting on CH-NH Group Donors, Stomach Neoplasms
Show Abstract · Added April 11, 2016
Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as HO production by >50% within 24 h. Reporter assays indicated that direct interaction of miR-124 with the 3'-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 before infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer.
0 Communities
1 Members
0 Resources
14 MeSH Terms