Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 129

Publication Record

Connections

Sex-Dependent Modulation of Anxiety and Fear by 5-HT Receptors in the Bed Nucleus of the Stria Terminalis.
Marcinkiewcz CA, Bierlein-De La Rosa G, Dorrier CE, McKnight M, DiBerto JF, Pati D, Gianessi CA, Hon OJ, Tipton G, McElligott ZA, Delpire E, Kash TL
(2019) ACS Chem Neurosci 10: 3154-3166
MeSH Terms: Animals, Anxiety, Behavior, Animal, Fear, Feeding Behavior, Female, Gene Knockdown Techniques, Male, Mice, Mice, Transgenic, Motor Activity, Neurons, Receptor, Serotonin, 5-HT1A, Septal Nuclei, Sex Factors
Show Abstract · Added June 28, 2019
Serotonin (5-hydroxytryptamine; 5-HT) coordinates behavioral responses to stress through a variety of presynaptic and postsynaptic receptors distributed across functionally diverse neuronal networks in the central nervous system. Efferent 5-HT projections from the dorsal raphe nucleus (DRN) to the bed nucleus of the stria terminalis (BNST) are generally thought to enhance anxiety and aversive learning by activating 5-HT receptor (5-HTR) signaling in the BNST, although an opposing role for postsynaptic 5-HT receptors has recently been suggested. In the present study, we sought to delineate a role for postsynaptic 5-HT receptors in the BNST in aversive behaviors using a conditional knockdown of the 5-HT receptor. Both males and females were tested to dissect out sex-specific effects. We found that male mice have significantly reduced fear memory recall relative to female mice and inactivation of 5-HT receptor in the BNST increases contextual fear conditioning in male mice so that they resemble the females. This coincided with an increase in neuronal excitability in males, suggesting that 5-HT receptor deletion may enhance contextual fear recall by disinhibiting fear memory circuits in the BNST. Interestingly, 5-HT receptor knockdown did not significantly alter anxiety-like behavior in male or female mice, which is in agreement with previous findings that anxiety and fear are modulated by dissociable circuits in the BNST. Overall, these results suggest that BNST 5-HT receptors do not significantly alter behavior under basal conditions, but can act as a molecular brake that buffer against excessive activation of aversive circuits in more threatening contexts.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Toll-like receptor 3-mediated inflammation by p38 is enhanced by endothelial nitric oxide synthase knockdown.
Koch SR, Choi H, Mace EH, Stark RJ
(2019) Cell Commun Signal 17: 33
MeSH Terms: Capillary Permeability, Cells, Cultured, Chemokine CXCL10, Endothelium, Vascular, Gene Knockdown Techniques, Humans, Inflammation, Interleukin-6, Interleukin-8, Nitric Oxide Synthase Type III, Poly I-C, RNA, Small Interfering, Toll-Like Receptor 3, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added April 17, 2019
BACKGROUND - Vascular dysfunction is commonly seen during severe viral infections. Endothelial nitric oxide synthase (eNOS), has been postulated to play an important role in regulating vascular homeostasis as well as propagation of the inflammatory reaction. We hypothesized that the loss of eNOS would negatively impact toll-like receptor 3 (TLR3) signaling and worsen vascular function to viral challenge.
METHODS - Human microvascular endothelial cells (HMVECs) were exposed to either control or eNOS siRNA and then treated with Poly I:C, a TLR3 agonist and mimicker of dsRNA viruses. Cells were assessed for protein-protein associations, cytokine and chemokine analysis as well as transendothelial electrical resistance (TEER) as a surrogate of permeability.
RESULTS - HMVECs that had reduced eNOS expression had a significantly elevated increase in IL-6, IL-8 and IP-10 production after Poly I:C. In addition, the knockdown of eNOS enhanced the change in TEER after Poly I:C stimulation. Western blot analysis showed enhanced phosphorylation of p38 in sieNOS treated cells with Poly I:C compared to siControl cells. Proximity ligation assays further demonstrated direct eNOS-p38 protein-protein interactions. The addition of the p38 inhibitor, SB203580, in eNOS knockdown cells reduced both cytokine production after Poly I:C, and as well as mitigated the reduction in TEER, suggesting a direct link between eNOS and p38 in TLR3 signaling.
CONCLUSIONS - These results suggest that reduction of eNOS increases TLR3-mediated inflammation in human endothelial cells in a p38-dependent manner. This finding has important implications for understanding the pathogenesis of severe viral infections and the associated vascular dysfunction.
0 Communities
1 Members
0 Resources
14 MeSH Terms
A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links.
Andrews AM, McCartney HJ, Errington TM, D'Andrea AD, Macara IG
(2018) Nat Commun 9: 2592
MeSH Terms: Animals, DNA Damage, DNA Helicases, DNA Repair, Enzyme Assays, Exodeoxyribonucleases, Fanconi Anemia Complementation Group D2 Protein, Female, Fibroblasts, Gene Knockdown Techniques, Gene Knockout Techniques, HEK293 Cells, HeLa Cells, Humans, Male, Mice, Mice, Knockout, RNA Helicases, RNA, Small Interfering, Recombinant Proteins, Signal Transduction, Trans-Activators
Show Abstract · Added August 17, 2020
Interstrand DNA cross-links (ICLs) block both replication and transcription, and are commonly repaired by the Fanconi anemia (FA) pathway. However, FA-independent repair mechanisms of ICLs remain poorly understood. Here we report a previously uncharacterized protein, SAN1, as a 5' exonuclease that acts independently of the FA pathway in response to ICLs. Deletion of SAN1 in HeLa cells and mouse embryonic fibroblasts causes sensitivity to ICLs, which is prevented by re-expression of wild type but not nuclease-dead SAN1. SAN1 deletion causes DNA damage and radial chromosome formation following treatment with Mitomycin C, phenocopying defects in the FA pathway. However, SAN1 deletion is not epistatic with FANCD2, a core FA pathway component. Unexpectedly, SAN1 binds to Senataxin (SETX), an RNA/DNA helicase that resolves R-loops. SAN1-SETX binding is increased by ICLs, and is required to prevent cross-link sensitivity. We propose that SAN1 functions with SETX in a pathway necessary for resistance to ICLs.
0 Communities
0 Members
0 Resources
MeSH Terms
Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma.
Chiang YC, Park IY, Terzo EA, Tripathi DN, Mason FM, Fahey CC, Karki M, Shuster CB, Sohn BH, Chowdhury P, Powell RT, Ohi R, Tsai YS, de Cubas AA, Khan A, Davis IJ, Strahl BD, Parker JS, Dere R, Walker CL, Rathmell WK
(2018) Cancer Res 78: 3135-3146
MeSH Terms: Animals, Carcinogenesis, Carcinoma, Renal Cell, Cell Line, Tumor, Chromosomes, Human, Pair 3, Fibroblasts, Gene Knockdown Techniques, Genomic Instability, Haploinsufficiency, Histone-Lysine N-Methyltransferase, Histones, Humans, Kidney Neoplasms, Kidney Tubules, Proximal, Lysine, Methylation, Mice, Micronuclei, Chromosome-Defective, Microtubules
Show Abstract · Added October 30, 2019
Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase , which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability. We now show that monoallelic, -deficient cells retaining H3K36me3, but not αTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In -inactivated human kidney cells, rescue with a pathogenic mutant deficient for microtubule (αTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability. Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Microsomal triglyceride transfer protein contributes to lipid droplet maturation in adipocytes.
Swift LL, Love JD, Harris CM, Chang BH, Jerome WG
(2017) PLoS One 12: e0181046
MeSH Terms: 3T3-L1 Cells, Adipocytes, Adipose Tissue, Brown, Adipose Tissue, White, Animals, Body Composition, Carrier Proteins, Diet, High-Fat, Gene Knockdown Techniques, Lipid Droplets, Mice, Mice, Transgenic, Weight Gain
Show Abstract · Added March 3, 2020
Previous studies in our laboratory have established the presence of MTP in both white and brown adipose tissue in mice as well as in 3T3-L1 cells. Additional studies demonstrated an increase in MTP levels as 3T3-L1 cells differentiate into adipocytes concurrent with the movement of MTP from the juxtanuclear region of the cell to the surface of lipid droplets. This suggested a role for MTP in lipid droplet biogenesis and/or maturation. To probe the role of MTP in adipocytes, we used a Cre-Lox approach with aP2-Cre and Adipoq-Cre recombinase transgenic mice to knock down MTP expression in brown and white fat of mice. MTP expression was reduced approximately 55% in white fat and 65-80% in brown fat. Reducing MTP expression in adipose tissue had no effect on weight gain or body composition, whether the mice were fed a regular rodent or high fat diet. In addition, serum lipids and unesterified fatty acid levels were not altered in the knockdown mice. Importantly, decreased MTP expression in adipose tissue was associated with smaller lipid droplets in brown fat and smaller adipocytes in white fat. These results combined with our previous studies showing MTP lipid transfer activity is not necessary for lipid droplet initiation or growth in the early stages of differentiation, suggest that a structural feature of the MTP protein is important in lipid droplet maturation. We conclude that MTP protein plays a critical role in lipid droplet maturation, but does not regulate total body fat accumulation.
0 Communities
1 Members
0 Resources
MeSH Terms
Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus.
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT
(2017) Nat Med 23: 997-1003
MeSH Terms: Acetazolamide, Animals, Antioxidants, Blotting, Western, Bumetanide, Cerebral Hemorrhage, Cerebral Ventricles, Cerebrospinal Fluid, Choroid Plexus, Diuretics, Gene Knockdown Techniques, Gene Knockout Techniques, Hydrocephalus, Immunoblotting, Immunohistochemistry, Immunoprecipitation, Inflammation, NF-kappa B, Proline, Protein-Serine-Threonine Kinases, Rats, Rats, Wistar, Salicylanilides, Solute Carrier Family 12, Member 2, Sulfonamides, Thiocarbamates, Toll-Like Receptor 4
Show Abstract · Added April 3, 2018
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood-CSF barrier to gate immune cell entry into the central nervous system. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4-NF-κB signaling or the SPAK-NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.
0 Communities
1 Members
0 Resources
MeSH Terms
Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms.
Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR, DeRan M, von Grotthuss M, Fontanillas P, Spooner A, Guzman G, Deik AA, Pierce KA, Dennis C, Clish CB, Carr SA, Wagner BK, Schenone M, Ng MCY, Chen BH, MEDIA Consortium, SIGMA T2D Consortium, Centeno-Cruz F, Zerrweck C, Orozco L, Altshuler DM, Schreiber SL, Florez JC, Jacobs SBR, Lander ES
(2017) Cell 170: 199-212.e20
MeSH Terms: Basigin, Cell Membrane, Chromosomes, Human, Pair 17, Diabetes Mellitus, Type 2, Gene Knockdown Techniques, Haplotypes, Hepatocytes, Heterozygote, Histone Code, Humans, Liver, Models, Molecular, Monocarboxylic Acid Transporters
Show Abstract · Added September 20, 2017
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development.
Kara N, Wei C, Commanday AC, Patton JG
(2017) Dev Biol 429: 321-334
MeSH Terms: Animal Fins, Animals, Branchial Region, Cartilage, Cell Differentiation, Cell Proliferation, Cell Survival, Chondrogenesis, Embryo, Nonmammalian, Focal Adhesion Protein-Tyrosine Kinases, Gene Expression Regulation, Developmental, Gene Knockdown Techniques, MicroRNAs, Morphogenesis, Neural Crest, Zebrafish
Show Abstract · Added August 4, 2017
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells. Focal adhesion kinase (FAK) is a key regulator in integrin-mediated extracellular matrix (ECM) adhesion and has been proposed to function as a negative regulator of chondrogenesis. We show that FAK is downregulated in the pharyngeal arches during chondrogenesis and is a direct target of miR-27. Suppressing the accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal cartilage defects observed upon knock down of miR-27. These data support a crucial role for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through regulation of FAK.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers.
Song W, Hwang Y, Youngblood VM, Cook RS, Balko JM, Chen J, Brantley-Sieders DM
(2017) Oncogene 36: 5620-5630
MeSH Terms: Animals, Benzamides, Cell Cycle, Cell Line, Tumor, Cell Proliferation, Cyclin-Dependent Kinase Inhibitor p27, Ephrin-A2, Female, Gene Knockdown Techniques, Humans, Mice, Mice, Inbred NOD, Mice, Nude, Mice, SCID, Neoplasm Recurrence, Local, Niacinamide, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-myb, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added March 14, 2018
Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC.
0 Communities
2 Members
0 Resources
20 MeSH Terms
The Par3 polarity protein is an exocyst receptor essential for mammary cell survival.
Ahmed SM, Macara IG
(2017) Nat Commun 8: 14867
MeSH Terms: Animals, Apoptosis, Cadherins, Cell Adhesion Molecules, Cell Line, Cell Polarity, Cell Survival, Enzyme Activation, Epithelial Cells, Female, Gene Knockdown Techniques, Golgi Apparatus, Humans, Lysine, Mammary Glands, Animal, Models, Biological, PTEN Phosphohydrolase, Phosphatidylinositol Phosphates, Phosphorylation, Protein Domains, Proto-Oncogene Proteins c-akt, Vesicular Transport Proteins, rab GTP-Binding Proteins
Show Abstract · Added April 26, 2017
The exocyst is an essential component of the secretory pathway required for delivery of basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no such receptor has been identified. The Par3 polarity protein associates with TJs but has no known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival. PAR3 lacking this domain can associate with the cortex but cannot support exocyst function. We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-protein delivery.
0 Communities
1 Members
0 Resources
23 MeSH Terms