Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 279

Publication Record

Connections

Discovery of rare coding variants in OGDHL and BRCA2 in relation to breast cancer risk in Chinese women.
Guo X, Long J, Chen Z, Shu XO, Xiang YB, Wen W, Zeng C, Gao YT, Cai Q, Zheng W
(2020) Int J Cancer 146: 2175-2181
MeSH Terms: Adult, Aged, BRCA2 Protein, Breast Neoplasms, Case-Control Studies, China, Databases, Genetic, Female, Gene Frequency, Genetic Predisposition to Disease, Humans, Ketoglutarate Dehydrogenase Complex, Middle Aged, Mutation, Missense, Whole Exome Sequencing
Show Abstract · Added March 3, 2020
The missing heritability of breast cancer could be partially attributed to rare variants (MAF < 0.5%). To identify breast cancer-associated rare coding variants, we conducted whole-exome sequencing (~50×) in genomic DNA samples obtained from 831 breast cancer cases and 839 controls of Chinese females. Using burden tests for each gene that included rare missense or predicted deleterious variants, we identified 29 genes showing promising associations with breast cancer risk. We replicated the association for two genes, OGDHL and BRCA2, at a Bonferroni-corrected p < 0.05, by genotyping an independent set of samples from 1,628 breast cancer cases and 1,943 controls. The association for OGDHL was primarily driven by three predicted deleterious variants (p.Val827Met, p.Pro839Leu, p.Phe836Ser; p < 0.01 for all). For BRCA2, we characterized a total of 27 disruptive variants, including 18 nonsense, six frameshift and three splicing variants, whereas they were only detected in cases, but none of the controls. All of these variants were either very rare (AF < 0.1%) or not detected in >4,500 East Asian women from the genome Aggregation database (gnomAD), providing additional support to our findings. Our study revealed a potential novel gene and multiple disruptive variants of BRCA2 for breast cancer risk, which may identify high-risk women in Chinese populations.
© 2019 UICC.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA.
Moore E, Grifoni A, Weiskopf D, Schulten V, Arlehamn CSL, Angelo M, Pham J, Leary S, Sidney J, Broide D, Frazier A, Phillips E, Mallal S, Mack SJ, Sette A
(2018) Hum Immunol 79: 821-822
MeSH Terms: Adolescent, Adult, Alleles, California, Female, Gene Frequency, Genotype, Genotyping Techniques, HLA-A Antigens, HLA-B Antigens, HLA-C Antigens, HLA-DP Antigens, HLA-DQ Antigens, HLA-DR Antigens, Histocompatibility Testing, Humans, Linkage Disequilibrium, Male, Middle Aged, Sequence Analysis, DNA, T-Lymphocytes, Young Adult
Show Abstract · Added March 30, 2020
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 496 healthy adult donors from San Diego, California, to characterize allele frequencies in support of studies of T cell responses to common allergens. Deviations from Hardy Weinberg proportions were detected at each locus except A and C. Several alleles were found in more than 15% of individuals, including the class II alleles DPB1∗02:01, DPB1∗04:01, DQA1∗01:02, DQA1∗05:01, DQB1∗03:01, and the class I allele A∗02:01. Genotype data will be available in the Allele Frequencies Net Database (AFND 3562).
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31.
Wang H, Nandakumar P, Tekola-Ayele F, Tayo BO, Ware EB, Gu CC, Lu Y, Yao J, Zhao W, Smith JA, Hellwege JN, Guo X, Edwards TL, Loos RJF, Arnett DK, Fornage M, Rotimi C, Kardia SLR, Cooper RS, Rao DC, Ehret G, Chakravarti A, Zhu X
(2019) Eur J Hum Genet 27: 269-277
MeSH Terms: African Americans, Chromosomes, Human, Pair 1, Gene Frequency, Genome-Wide Association Study, Humans, Hypertension, Linkage Disequilibrium, Polymorphism, Single Nucleotide
Show Abstract · Added March 3, 2020
High blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and is more prevalent in African Americans as compared to other US groups. Although large, population-based genome-wide association studies (GWAS) have identified over 300 common polymorphisms modulating inter-individual BP variation, largely in European ancestry subjects, most of them do not localize to regions previously identified through family-based linkage studies. This discrepancy has remained unexplained despite the statistical power differences between current GWAS and prior linkage studies. To address this issue, we performed genome-wide linkage analysis of BP traits in African-American families from the Family Blood Pressure Program (FBPP) and genotyped on the Illumina Human Exome BeadChip v1.1. We identified a genomic region on chromosome 1q31 with LOD score 3.8 for pulse pressure (PP), a region we previously implicated in DBP studies of European ancestry families. Although no reported GWAS variants map to this region, combined linkage and association analysis of PP identified 81 rare and low frequency exonic variants accounting for the linkage evidence. Replication analysis in eight independent African ancestry cohorts (N = 16,968) supports this specific association with PP (P = 0.0509). Additional association and network analyses identified multiple potential candidate genes in this region expressed in multiple tissues and with a strong biological support for a role in BP. In conclusion, multiple genes and rare variants on 1q31 contribute to PP variation. Beyond producing new insights into PP, we demonstrate how family-based linkage and association studies can implicate specific rare and low frequency variants for complex traits.
0 Communities
1 Members
0 Resources
MeSH Terms
LPA Variants Are Associated With Residual Cardiovascular Risk in Patients Receiving Statins.
Wei WQ, Li X, Feng Q, Kubo M, Kullo IJ, Peissig PL, Karlson EW, Jarvik GP, Lee MTM, Shang N, Larson EA, Edwards T, Shaffer CM, Mosley JD, Maeda S, Horikoshi M, Ritchie M, Williams MS, Larson EB, Crosslin DR, Bland ST, Pacheco JA, Rasmussen-Torvik LJ, Cronkite D, Hripcsak G, Cox NJ, Wilke RA, Stein CM, Rotter JI, Momozawa Y, Roden DM, Krauss RM, Denny JC
(2018) Circulation 138: 1839-1849
MeSH Terms: Case-Control Studies, Coronary Disease, Databases, Genetic, Dyslipidemias, Electronic Health Records, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Lipoprotein(a), Phenotype, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Time Factors, Treatment Outcome
Show Abstract · Added March 24, 2020
BACKGROUND - Coronary heart disease (CHD) is a leading cause of death globally. Although therapy with statins decreases circulating levels of low-density lipoprotein cholesterol and the incidence of CHD, additional events occur despite statin therapy in some individuals. The genetic determinants of this residual cardiovascular risk remain unknown.
METHODS - We performed a 2-stage genome-wide association study of CHD events during statin therapy. We first identified 3099 cases who experienced CHD events (defined as acute myocardial infarction or the need for coronary revascularization) during statin therapy and 7681 controls without CHD events during comparable intensity and duration of statin therapy from 4 sites in the Electronic Medical Records and Genomics Network. We then sought replication of candidate variants in another 160 cases and 1112 controls from a fifth Electronic Medical Records and Genomics site, which joined the network after the initial genome-wide association study. Finally, we performed a phenome-wide association study for other traits linked to the most significant locus.
RESULTS - The meta-analysis identified 7 single nucleotide polymorphisms at a genome-wide level of significance within the LPA/PLG locus associated with CHD events on statin treatment. The most significant association was for an intronic single nucleotide polymorphism within LPA/PLG (rs10455872; minor allele frequency, 0.069; odds ratio, 1.58; 95% confidence interval, 1.35-1.86; P=2.6×10). In the replication cohort, rs10455872 was also associated with CHD events (odds ratio, 1.71; 95% confidence interval, 1.14-2.57; P=0.009). The association of this single nucleotide polymorphism with CHD events was independent of statin-induced change in low-density lipoprotein cholesterol (odds ratio, 1.62; 95% confidence interval, 1.17-2.24; P=0.004) and persisted in individuals with low-density lipoprotein cholesterol ≤70 mg/dL (odds ratio, 2.43; 95% confidence interval, 1.18-4.75; P=0.015). A phenome-wide association study supported the effect of this region on coronary heart disease and did not identify noncardiovascular phenotypes.
CONCLUSIONS - Genetic variations at the LPA locus are associated with CHD events during statin therapy independently of the extent of low-density lipoprotein cholesterol lowering. This finding provides support for exploring strategies targeting circulating concentrations of lipoprotein(a) to reduce CHD events in patients receiving statins.
0 Communities
1 Members
0 Resources
MeSH Terms
Pathogenic Germline Variants in 10,389 Adult Cancers.
Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, Scott AD, Krassowski M, Cherniack AD, Houlahan KE, Jayasinghe R, Wang LB, Zhou DC, Liu D, Cao S, Kim YW, Koire A, McMichael JF, Hucthagowder V, Kim TB, Hahn A, Wang C, McLellan MD, Al-Mulla F, Johnson KJ, Cancer Genome Atlas Research Network, Lichtarge O, Boutros PC, Raphael B, Lazar AJ, Zhang W, Wendl MC, Govindan R, Jain S, Wheeler D, Kulkarni S, Dipersio JF, Reimand J, Meric-Bernstam F, Chen K, Shmulevich I, Plon SE, Chen F, Ding L
(2018) Cell 173: 355-370.e14
MeSH Terms: DNA Copy Number Variations, Databases, Genetic, Gene Deletion, Gene Frequency, Genetic Predisposition to Disease, Genotype, Germ Cells, Germ-Line Mutation, Humans, Loss of Heterozygosity, Mutation, Missense, Neoplasms, Polymorphism, Single Nucleotide, Proto-Oncogene Proteins c-met, Proto-Oncogene Proteins c-ret, Tumor Suppressor Proteins
Show Abstract · Added October 30, 2019
We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 159 individuals from the Worcester region of the Western Cape province of South Africa.
Grifoni A, Sidney J, Carpenter C, Phillips E, Mallal S, Scriba TJ, Sette A, Lindestam Arlehamn CS
(2018) Hum Immunol 79: 143-144
MeSH Terms: Databases, Genetic, Gene Frequency, Genotype, HLA-A Antigens, HLA-B Antigens, HLA-C Antigens, HLA-DQ Antigens, HLA-DR Antigens, Humans, Lymphocyte Activation, Mycobacterium tuberculosis, Sequence Analysis, DNA, South Africa, T-Lymphocytes, Tuberculosis
Show Abstract · Added March 30, 2020
DNA sequence-based typing at the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci was performed on samples provided by 159 individuals from the Worcester region of the Western Cape province of South Africa. The purpose of the study was to characterize allele frequencies in the local population, to support studies of T cell immunity against pathogens, including Mycobacterium tuberculosis. There are no detectable deviations from Hardy Weinberg proportions for the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, and -DRB1 loci. A minor deviation was detected at the HLA-DQB1 locus due to an excess of homozygotes. The genotype data are available in the Allele Frequencies Net Database under identifier 3425.
Copyright © 2018. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Transethnic Evaluation Identifies Low-Frequency Loci Associated With 25-Hydroxyvitamin D Concentrations.
Hong J, Hatchell KE, Bradfield JP, Bjonnes A, Chesi A, Lai CQ, Langefeld CD, Lu L, Lu Y, Lutsey PL, Musani SK, Nalls MA, Robinson-Cohen C, Roizen JD, Saxena R, Tucker KL, Ziegler JT, Arking DE, Bis JC, Boerwinkle E, Bottinger EP, Bowden DW, Gilsanz V, Houston DK, Kalkwarf HJ, Kelly A, Lappe JM, Liu Y, Michos ED, Oberfield SE, Palmer ND, Rotter JI, Sapkota B, Shepherd JA, Wilson JG, Basu S, de Boer IH, Divers J, Freedman BI, Grant SFA, Hakanarson H, Harris TB, Kestenbaum BR, Kritchevsky SB, Loos RJF, Norris JM, Norwood AF, Ordovas JM, Pankow JS, Psaty BM, Sanghera DK, Wagenknecht LE, Zemel BS, Meigs J, Dupuis J, Florez JC, Wang T, Liu CT, Engelman CD, Billings LK
(2018) J Clin Endocrinol Metab 103: 1380-1392
MeSH Terms: Adolescent, Adult, African Americans, Aged, Body Mass Index, Child, European Continental Ancestry Group, Female, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Hispanic Americans, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, United States, Vitamin D, Vitamin D Deficiency, Young Adult
Show Abstract · Added January 3, 2019
Context - Vitamin D inadequacy is common in the adult population of the United States. Although the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known about populations with Hispanic or African ancestry.
Objective - The Trans-Ethnic Evaluation of Vitamin D (TRANSCEN-D) genomewide association study (GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D [25(OH)D] concentrations from the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits (SUNLIGHT) meta-analyses of European ancestry and to identify genetic variants related to vitamin D concentrations in African and Hispanic ancestries.
Design - Ancestry-specific (Hispanic and African) and transethnic (Hispanic, African, and European) meta-analyses were performed with Meta-Analysis Helper software (METAL).
Patients or Other Participants - In total, 8541 African American and 3485 Hispanic American (from North America) participants from 12 cohorts and 16,124 European participants from SUNLIGHT were included in the study.
Main Outcome Measures - Blood concentrations of 25(OH)D were measured for all participants.
Results - Ancestry-specific analyses in African and Hispanic Americans replicated single nucleotide polymorphisms (SNPs) in GC (2 and 4 SNPs, respectively). An SNP (rs79666294) near the KIF4B gene was identified in the African American cohort. Transethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the transethnic analyses revealed SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively.
Conclusions - Ancestry-specific and transethnic GWASs of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism warrant further investigation.
0 Communities
1 Members
0 Resources
MeSH Terms
Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka.
Grifoni A, Weiskopf D, Lindestam Arlehamn CS, Angelo M, Leary S, Sidney J, Frazier A, Phillips E, Mallal S, Mack SJ, Tippalagama R, Goonewardana S, Premawansa S, Premawansa G, Wijewickrama A, De Silva AD, Sette A
(2018) Hum Immunol 79: 87-88
MeSH Terms: Adult, Animals, Ethnic Groups, Female, Gene Frequency, Genotype, HLA-A Antigens, HLA-B Antigens, HLA-C Antigens, HLA-DP Antigens, HLA-DQ Antigens, HLA-DR Antigens, Healthy Volunteers, Histocompatibility Testing, Humans, Male, Mice, Sequence Analysis, DNA, Sri Lanka, T-Lymphocytes
Show Abstract · Added March 30, 2020
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 714 healthy adult blood bank donors from Colombo, Sri Lanka, to characterize allele frequencies in support of studies on T cell immunity against pathogens, including Dengue virus. Deviations from Hardy Weinberg proportions were not detected at any locus. Several alleles were found in >30% of individuals, including the class II alleles DPB1 * 04:01, DPB1 * 02:01, DQB1 * 06:01 and DRB1 * 07:01, and the class I alleles A * 33:03 and A * 24:02. Genotype data will be available in the Allele Frequencies Net Database.
Copyright © 2018 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees.
Jun G, Manning A, Almeida M, Zawistowski M, Wood AR, Teslovich TM, Fuchsberger C, Feng S, Cingolani P, Gaulton KJ, Dyer T, Blackwell TW, Chen H, Chines PS, Choi S, Churchhouse C, Fontanillas P, King R, Lee S, Lincoln SE, Trubetskoy V, DePristo M, Fingerlin T, Grossman R, Grundstad J, Heath A, Kim J, Kim YJ, Laramie J, Lee J, Li H, Liu X, Livne O, Locke AE, Maller J, Mazur A, Morris AP, Pollin TI, Ragona D, Reich D, Rivas MA, Scott LJ, Sim X, Tearle RG, Teo YY, Williams AL, Zöllner S, Curran JE, Peralta J, Akolkar B, Bell GI, Burtt NP, Cox NJ, Florez JC, Hanis CL, McKeon C, Mohlke KL, Seielstad M, Wilson JG, Atzmon G, Below JE, Dupuis J, Nicolae DL, Lehman D, Park T, Won S, Sladek R, Altshuler D, McCarthy MI, Duggirala R, Boehnke M, Frayling TM, Abecasis GR, Blangero J
(2018) Proc Natl Acad Sci U S A 115: 379-384
MeSH Terms: Diabetes Mellitus, Type 2, Family Health, Female, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Mexican Americans, Pedigree, Phenotype, Quantitative Trait Loci, Whole Genome Sequencing
Show Abstract · Added March 15, 2018
A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant -expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O'Connel JR, O'Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zhou W, Zondervan KT, CHD Exome+ Consortium, EPIC-CVD Consortium, ExomeBP Consortium, Global Lipids Genetic Consortium, GoT2D Genes Consortium, EPIC InterAct Consortium, INTERVAL Study, ReproGen Consortium, T2D-Genes Consortium, MAGIC Investigators, Understanding Society Scientific Group, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF
(2018) Nat Genet 50: 26-41
MeSH Terms: Adult, Animals, Body Mass Index, Drosophila, Energy Intake, Energy Metabolism, Female, Gene Frequency, Genetic Variation, Humans, Male, Obesity, Proteins, Syndrome
Show Abstract · Added March 14, 2018
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
0 Communities
1 Members
0 Resources
14 MeSH Terms