Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 3409

Publication Record

Connections

Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits.
Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM
(2019) Nat Genet 51: 933-940
MeSH Terms: Algorithms, Computational Biology, Gene Expression Profiling, Gene Expression Regulation, Gene Regulatory Networks, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Mental Disorders, Organ Specificity, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Transcriptome
Show Abstract · Added July 17, 2019
The genetic architecture of psychiatric disorders is characterized by a large number of small-effect variants located primarily in non-coding regions, suggesting that the underlying causal effects may influence disease risk by modulating gene expression. We provide comprehensive analyses using transcriptome data from an unprecedented collection of tissues to gain pathophysiological insights into the role of the brain, neuroendocrine factors (adrenal gland) and gastrointestinal systems (colon) in psychiatric disorders. In each tissue, we perform PrediXcan analysis and identify trait-associated genes for schizophrenia (n associations = 499; n unique genes = 275), bipolar disorder (n associations = 17; n unique genes = 13), attention deficit hyperactivity disorder (n associations = 19; n unique genes = 12) and broad depression (n associations = 41; n unique genes = 31). Importantly, both PrediXcan and summary-data-based Mendelian randomization/heterogeneity in dependent instruments analyses suggest potentially causal genes in non-brain tissues, showing the utility of these tissues for mapping psychiatric disease genetic predisposition. Our analyses further highlight the importance of joint tissue approaches as 76% of the genes were detected only in difficult-to-acquire tissues.
0 Communities
1 Members
0 Resources
MeSH Terms
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Azzollini J, Balmaña J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Borg A, Brauch H, Brenner H, Broeks A, Burwinkel B, Caldés T, Caligo MA, Campa D, Campbell I, Canzian F, Carter J, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, Dennis J, Devilee P, Diez O, Dörk T, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Friedman E, Frost D, Gabrielson M, Gago-Dominguez M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hoover RN, Hopper JL, Hulick PJ, Humphreys K, Imyanitov EN, ABCTB Investigators, HEBON Investigators, BCFR Investigators, Isaacs C, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Karlan BY, Khusnutdinova E, Kiiski JI, Ko YD, Jones ME, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leslie G, Lester J, Lesueur F, Lindström S, Long J, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Margolin S, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Nussbaum RL, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Pharoah PDP, Plaseska-Karanfilska D, Poppe B, Presneau N, Radice P, Rantala J, Rennert G, Risch HA, Saloustros E, Sanden K, Sawyer EJ, Schmidt MK, Schmutzler RK, Sharma P, Shu XO, Simard J, Singer CF, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Wang Q, Wappenschmidt B, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Kraft P, Antoniou AC, Zheng W, Easton DF, Milne RL, Beesley J, Chenevix-Trench G
(2019) Nat Commun 10: 1741
MeSH Terms: Breast Neoplasms, Female, Gene Expression Profiling, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Quantitative Trait Loci
Show Abstract · Added July 17, 2019
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
0 Communities
1 Members
0 Resources
MeSH Terms
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk.
Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardiñas AF, Rajagopal VM, Als TD, T Nguyen H, Girdhar K, Boocock J, Roussos P, Fromer M, Kramer R, Domenici E, Gamazon ER, Purcell S, CommonMind Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, iPSYCH-GEMS Schizophrenia Working Group, Demontis D, Børglum AD, Walters JTR, O'Donovan MC, Sullivan P, Owen MJ, Devlin B, Sieberts SK, Cox NJ, Im HK, Sklar P, Stahl EA
(2019) Nat Genet 51: 659-674
MeSH Terms: Brain, Case-Control Studies, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk, Schizophrenia, Transcriptome
Show Abstract · Added July 17, 2019
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
0 Communities
1 Members
0 Resources
MeSH Terms
Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway.
Neitzel LR, Spencer ZT, Nayak A, Cselenyi CS, Benchabane H, Youngblood CQ, Zouaoui A, Ng V, Stephens L, Hann T, Patton JG, Robbins D, Ahmed Y, Lee E
(2019) Mech Dev 156: 20-31
MeSH Terms: Animals, Body Patterning, Drosophila, Embryonic Development, Evolution, Molecular, Gene Expression Regulation, Developmental, Glycosylation, Humans, Phosphotransferases (Alcohol Group Acceptor), Wnt Signaling Pathway, Xenopus laevis, Zebrafish
Show Abstract · Added April 10, 2019
In a screen for human kinases that regulate Xenopus laevis embryogenesis, we identified Nagk and other components of the UDP-GlcNAc glycosylation salvage pathway as regulators of anteroposterior patterning and Wnt signaling. We find that the salvage pathway does not affect other major embryonic signaling pathways (Fgf, TGFβ, Notch, or Shh), thereby demonstrating specificity for Wnt signaling. We show that the role of the salvage pathway in Wnt signaling is evolutionarily conserved in zebrafish and Drosophila. Finally, we show that GlcNAc is essential for the growth of intestinal enteroids, which are highly dependent on Wnt signaling for growth and maintenance. We propose that the Wnt pathway is sensitive to alterations in the glycosylation state of a cell and acts as a nutritional sensor in order to couple growth/proliferation with its metabolic status. We also propose that the clinical manifestations observed in congenital disorders of glycosylation (CDG) in humans may be due, in part, to their effects on Wnt signaling during development.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of .
Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP
(2019) MBio 10:
MeSH Terms: Animals, Cation Transport Proteins, Disease Models, Animal, Gene Expression Regulation, Bacterial, Homeostasis, Iron, Manganese, Mice, Inbred BALB C, Microbial Viability, Oxidative Stress, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Transcription, Genetic, Virulence
Show Abstract · Added April 2, 2019
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of , a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in , MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the Mn uptake system. Inactivation of or leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, and are required for full virulence of during infection, suggesting experiences Mn toxicity Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of and induction of , both of which are critical for pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis. Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of leads to a significant reduction in resistance to oxidative stress and mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and virulence. Therefore, this establishes MntE as a potential target for development of anti- therapeutics.
Copyright © 2019 Grunenwald et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Metabolic plasticity meets gene regulation.
Paudel BB, Quaranta V
(2019) Proc Natl Acad Sci U S A 116: 3370-3372
MeSH Terms: Biochemical Phenomena, Gene Expression Regulation, Humans, Metabolic Networks and Pathways, Neoplasms, Neuronal Plasticity
Added March 23, 2019
0 Communities
1 Members
0 Resources
6 MeSH Terms
Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, Robinson-Cohen C, Roumie CL, Chung CP, Birdwell KA, Damrauer SM, DuVall SL, Klarin D, Cho K, Wang Y, Evangelou E, Cabrera CP, Wain LV, Shrestha R, Mautz BS, Akwo EA, Sargurupremraj M, Debette S, Boehnke M, Scott LJ, Luan J, Zhao JH, Willems SM, Thériault S, Shah N, Oldmeadow C, Almgren P, Li-Gao R, Verweij N, Boutin TS, Mangino M, Ntalla I, Feofanova E, Surendran P, Cook JP, Karthikeyan S, Lahrouchi N, Liu C, Sepúlveda N, Richardson TG, Kraja A, Amouyel P, Farrall M, Poulter NR, Understanding Society Scientific Group, International Consortium for Blood Pressure, Blood Pressure-International Consortium of Exome Chip Studies, Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, Conen D, Palmer CNA, Attia J, Chasman DI, Ridker PM, Melander O, Mook-Kanamori DO, Harst PV, Cucca F, Schlessinger D, Hayward C, Spector TD, Jarvelin MR, Hennig BJ, Timpson NJ, Wei WQ, Smith JC, Xu Y, Matheny ME, Siew EE, Lindgren C, Herzig KH, Dedoussis G, Denny JC, Psaty BM, Howson JMM, Munroe PB, Newton-Cheh C, Caulfield MJ, Elliott P, Gaziano JM, Concato J, Wilson PWF, Tsao PS, Velez Edwards DR, Susztak K, Million Veteran Program, O'Donnell CJ, Hung AM, Edwards TL
(2019) Nat Genet 51: 51-62
MeSH Terms: Adolescent, Animals, Blood Pressure, Ethnic Groups, Female, Gene Expression, Genome-Wide Association Study, Humans, Kidney Tubules, Male, Mice, Middle Aged, Polymorphism, Single Nucleotide, Transcriptome, Up-Regulation
Show Abstract · Added January 3, 2019
In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Tissue-Specific Differential Expression of Novel Genes and Long Intergenic Noncoding RNAs in Humans With Extreme Response to Evoked Endotoxemia.
Ferguson JF, Xue C, Gao Y, Tian T, Shi J, Zhang X, Wang Y, Li YD, Wei Z, Li M, Zhang H, Reilly MP
(2018) Circ Genom Precis Med 11: e001907
MeSH Terms: Adipose Tissue, Animals, Endotoxemia, Female, Gene Expression Regulation, Genome-Wide Association Study, Humans, Immunity, Innate, Inflammation, Male, Mice, Monocytes, RNA, Long Noncoding, RNA, Messenger, Sequence Analysis, RNA
Show Abstract · Added April 2, 2019
BACKGROUND - Cytokine responses to activation of innate immunity differ between individuals, yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic noncoding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.
METHODS - In the GENE Study (Genetics of Evoked Response to Niacin and Endotoxemia), we performed an inpatient endotoxin challenge (1 ng/kg lipopolysaccharide [LPS]) in healthy humans. We selected individuals in the top (high responders) and bottom (low responders) extremes of inflammatory responses and applied RNA sequencing to CD14 monocytes (N=15) and adipose tissue (N=25) before and after LPS administration.
RESULTS - Although only a small number of genes were differentially expressed at baseline, there were clear differences in the magnitude of the transcriptional response post-LPS between high and low responders, with a far greater number of genes differentially expressed by endotoxemia in high responders. Furthermore, tissue responses differed during inflammation, and we found a number of tissue-specific differentially expressed lincRNAs post-LPS, which we validated. Relative to nondifferentially expressed lincRNAs, differentially expressed lincRNAs were equally likely to be nonconserved as conserved between human and mouse, indicating that conservation is not a predictor of lincRNAs associated with human inflammatory pathophysiology. Differentially expressed genes also were enriched for signals with inflammatory and cardiometabolic disease in published genome-wide association studies. CTB-41I6.2 ( AC002091.1), a nonconserved human-specific lincRNA, is one of the top lincRNAs regulated by endotoxemia in monocytes, but not in adipose tissue. Knockdown experiments in THP-1 monocytes suggest that this lincRNA enhances LPS-induced interleukin 6 ( IL6) expression in monocytes, and we now refer to this as monocyte LPS-induced lincRNA regulator of IL6 ( MOLRIL6).
CONCLUSIONS - We highlight mRNAs and lincRNAs that represent novel candidates for modulation of innate immune and metabolic responses in humans.
CLINICAL TRIAL REGISTRATION - URL: https://www.clinicaltrials.gov . Unique identifier: NCT00953667.
0 Communities
1 Members
0 Resources
15 MeSH Terms
OxyR Regulates the Transcriptional Response to Hydrogen Peroxide.
Juttukonda LJ, Green ER, Lonergan ZR, Heffern MC, Chang CJ, Skaar EP
(2019) Infect Immun 87:
MeSH Terms: Acinetobacter Infections, Acinetobacter baumannii, Animals, Anti-Infective Agents, Local, Gene Expression Regulation, Bacterial, Hydrogen Peroxide, Mice, Oxidants, Repressor Proteins, Stress, Physiological
Show Abstract · Added April 7, 2019
is a Gram-negative opportunistic pathogen that causes diverse infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired antimicrobial-resistance mechanisms, isolates are commonly multidrug resistant, and infections are notoriously difficult to treat. The World Health Organization recently highlighted carbapenem-resistant as a "critical priority" for the development of new antimicrobials because of the risk to human health posed by this organism. Therefore, it is important to discover the mechanisms used by to survive stresses encountered during infection in order to identify new drug targets. In this study, by use of imaging, we identified hydrogen peroxide (HO) as a stressor produced in the lung during infection and defined OxyR as a transcriptional regulator of the HO stress response. Upon exposure to HO, differentially transcribes several hundred genes. However, the transcriptional upregulation of genes predicted to detoxify hydrogen peroxide is abolished in an strain in which the transcriptional regulator is genetically inactivated. Moreover, inactivation of in both antimicrobial-susceptible and multidrug-resistant strains impairs growth in the presence of HO OxyR is a direct regulator of and , which encode the major HO-degrading enzymes in , as confirmed through measurement of promoter binding by recombinant OxyR in electromobility shift assays. Finally, an mutant is less fit than wild-type during infection of the murine lung. This work reveals a mechanism used by this important human pathogen to survive HO stress encountered during infection.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study.
Salisbury-Ruf CT, Bertram CC, Vergeade A, Lark DS, Shi Q, Heberling ML, Fortune NL, Okoye GD, Jerome WG, Wells QS, Fessel J, Moslehi J, Chen H, Roberts LJ, Boutaud O, Gamazon ER, Zinkel SS
(2018) Elife 7:
MeSH Terms: Animals, Apoptosis, BH3 Interacting Domain Death Agonist Protein, Beclin-1, Cell Respiration, Fibrosis, Gene Expression Regulation, Genome-Wide Association Study, Genomics, Heart Diseases, Heart Ventricles, Humans, Mice, Inbred C57BL, Mitochondria, Mitochondrial Proton-Translocating ATPases, Mutation, Myeloid Progenitor Cells, Myocardial Infarction, Myocytes, Cardiac, Polymorphism, Single Nucleotide, Protein Multimerization, Protein Structure, Secondary, Protein Subunits, Reactive Oxygen Species, Reproducibility of Results, Up-Regulation
Show Abstract · Added December 11, 2018
Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, Bid, associates with MI predisposition. Furthermore, Bid but not Bid associates with Mcl-1, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.
© 2018, Salisbury-Ruf et al.
0 Communities
3 Members
0 Resources
26 MeSH Terms