Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 23

Publication Record

Connections

Quelling an innate response to dsRNA.
Ogden KM, Prasad BV
(2015) Oncotarget 6: 28535-6
MeSH Terms: 2',5'-Oligoadenylate Synthetase, Animals, Antiviral Agents, Endoribonucleases, Evolution, Molecular, Exoribonucleases, Gene Expression Regulation, Viral, Host-Pathogen Interactions, Humans, Immunity, Innate, Molecular Targeted Therapy, Nucleic Acid Conformation, Phosphodiesterase Inhibitors, RNA, Double-Stranded, RNA, Viral, Signal Transduction, Viral Proteins, Viruses
Added April 26, 2017
0 Communities
1 Members
0 Resources
18 MeSH Terms
Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions.
Hood JL, Morabito MV, Martinez CR, Gilbert JA, Ferrick EA, Ayers GD, Chappell JD, Dermody TS, Emeson RB
(2014) Mol Cell Neurosci 61: 97-109
MeSH Terms: Adenosine Deaminase, Age Factors, Analysis of Variance, Animals, Animals, Newborn, Body Weight, Brain, Gene Expression Regulation, Viral, Mice, Mice, Inbred C57BL, Protein Isoforms, RNA Editing, RNA, Messenger, RNA-Binding Proteins, Reoviridae
Show Abstract · Added January 20, 2015
Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells.
Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM
(2012) J Immunol 189: 2084-8
MeSH Terms: Animals, Cell Differentiation, Cells, Cultured, Gene Expression Regulation, Viral, Humans, Interferon-gamma, Mice, Mice, Inbred BALB C, Mice, Knockout, Mice, Transgenic, RNA, Untranslated, RNA, Viral, Th1 Cells, Theilovirus, Up-Regulation
Show Abstract · Added December 10, 2013
The majority of the genome is noncoding and was thought to be nonfunctional. However, it is now appreciated that transcriptional control of protein coding genes resides within these noncoding regions. Thousands of genes encoding long intergenic noncoding RNAs (lincRNAs) have been recently identified throughout the genome, which positively or negatively regulate transcription of neighboring target genes. Both TMEVPG1 and its mouse ortholog encode lincRNAs and are positioned near the IFN-γ gene (IFNG). In this study, we show that transcription of both mouse and human TMEVPG1 genes is Th1 selective and dependent on Stat4 and T-bet, transcription factors that drive the Th1 differentiation program. Ifng expression is partially restored in Stat4-/-Tbx21-/- cells through coexpression of T-bet and Tmevpg1, and Tmevpg1 expression contributes to, but alone is not sufficient to, drive Th1-dependent Ifng expression. Our results suggest that TMEVPG1 belongs to the general class of lincRNAs that positively regulate gene transcription.
0 Communities
3 Members
0 Resources
15 MeSH Terms
Optimum length and flexibility of reovirus attachment protein σ1 are required for efficient viral infection.
Bokiej M, Ogden KM, Ikizler M, Reiter DM, Stehle T, Dermody TS
(2012) J Virol 86: 10270-80
MeSH Terms: Animals, Capsid, Capsid Proteins, Carbohydrates, Cell Adhesion Molecules, Cell Line, Cell Membrane, Fibroblasts, Fluorescent Antibody Technique, Indirect, Gene Deletion, Gene Expression Regulation, Viral, Genome, Viral, HeLa Cells, Humans, Mice, Mutation, Protein Binding, Protein Folding, Receptors, Cell Surface, Reoviridae, Virus Replication
Show Abstract · Added December 10, 2013
Reovirus attachment protein σ1 is an elongated trimer with head-and-tail morphology that engages cell-surface carbohydrate and junctional adhesion molecule A (JAM-A). The σ1 protein is comprised of three domains partitioned by two flexible linkers termed interdomain regions (IDRs). To determine the importance of σ1 length and flexibility at different stages of reovirus infection, we generated viruses with mutant σ1 molecules of altered length and flexibility and tested these viruses for the capacity to bind the cell surface, internalize, uncoat, induce protein synthesis, assemble, and replicate. We reduced the length of the α-helical σ1 tail to engineer mutants L1 and L2 and deleted midpoint and head-proximal σ1 IDRs to generate ΔIDR1 and ΔIDR2 mutant viruses, respectively. Decreasing length or flexibility of σ1 resulted in delayed reovirus infection and reduced viral titers. L1, L2, and ΔIDR1 viruses but not ΔIDR2 virus displayed reduced cell attachment, but altering σ1 length or flexibility did not diminish the efficiency of virion internalization. Replication of ΔIDR2 virus was hindered at a postdisassembly step. Differences between wild-type and σ1 mutant viruses were not attributable to alterations in σ1 folding, as determined by experiments assessing engagement of cell-surface carbohydrate and JAM-A by the length and IDR mutant viruses. However, ΔIDR1 virus harbored substantially less σ1 on the outer capsid. Taken together, these data suggest that σ1 length is required for reovirus binding to cells. In contrast, IDR1 is required for stable σ1 encapsidation, and IDR2 is required for a postuncoating replication step. Thus, the structural architecture of σ1 is required for efficient reovirus infection of host cells.
0 Communities
2 Members
0 Resources
21 MeSH Terms
The effect of HIV and HPV coinfection on cervical COX-2 expression and systemic prostaglandin E2 levels.
Fitzgerald DW, Bezak K, Ocheretina O, Riviere C, Wright TC, Milne GL, Zhou XK, Du B, Subbaramaiah K, Byrt E, Goodwin ML, Rafii A, Dannenberg AJ
(2012) Cancer Prev Res (Phila) 5: 34-40
MeSH Terms: AIDS Serodiagnosis, Adult, Cervix Uteri, Comorbidity, Creatinine, Cyclooxygenase 2, Dinoprostone, Female, Gene Expression Regulation, Viral, HIV Infections, HIV Seropositivity, Haiti, Humans, Inflammation, Middle Aged, Papillomavirus Infections, RNA, Messenger
Show Abstract · Added March 26, 2014
Human immunodeficiency virus (HIV-1) infection causes chronic inflammation. COX-2-derived prostaglandin E(2) (PGE(2)) has been linked to both inflammation and carcinogenesis. We hypothesized that HIV-1 could induce COX-2 in cervical tissue and increase systemic PGE(2) levels and that these alterations could play a role in AIDS-related cervical cancer. Levels of cervical COX-2 mRNA and urinary PGE-M, a biomarker of systemic PGE(2) levels, were determined in 17 HIV-negative women with a negative cervical human papilloma virus (HPV) test, 18 HIV-infected women with a negative HPV test, and 13 HIV-infected women with cervical HPV and high-grade squamous intraepithelial lesions on cytology. Cervical COX-2 levels were significantly associated with HIV and HPV status (P = 0.006 and 0.002, respectively). Median levels of urinary PGE-M were increased in HIV-infected compared with uninfected women (11.2 vs. 6.8 ng/mg creatinine, P = 0.02). Among HIV-infected women, urinary PGE-M levels were positively correlated with plasma HIV-1 RNA levels (P = 0.003). Finally, levels of cervical COX-2 correlated with urinary PGE-M levels (P = 0.005). This study shows that HIV-1 infection is associated with increased cervical COX-2 and elevated systemic PGE(2) levels. Drugs that inhibit the synthesis of PGE(2) may prove useful in reducing the risk of cervical cancer or systemic inflammation in HIV-infected women.
©2011 AACR.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Maturation-induced cloaking of neutralization epitopes on HIV-1 particles.
Joyner AS, Willis JR, Crowe JE, Aiken C
(2011) PLoS Pathog 7: e1002234
MeSH Terms: Antibodies, Monoclonal, Antibodies, Neutralizing, CD4-Positive T-Lymphocytes, Cell Line, Epitopes, Fluorescent Antibody Technique, Gene Expression Regulation, Viral, Genes, env, HIV Antibodies, HIV Envelope Protein gp120, HIV Envelope Protein gp41, HIV-1, Humans, Immune Evasion, Immunoblotting, Neutralization Tests, Virion
Show Abstract · Added December 5, 2013
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Chronic progressive deficits in neuron size, density and number in the trigeminal ganglia of mice latently infected with herpes simplex virus.
Dosa S, Castellanos K, Bacsa S, Gagyi E, Kovacs SK, Valyi-Nagy K, Shukla D, Dermody TS, Valyi-Nagy T
(2011) Brain Pathol 21: 583-93
MeSH Terms: Adaptor Proteins, Signal Transducing, Age Factors, Analysis of Variance, Animals, Cell Count, Disease Models, Animal, Disease Progression, Female, Gene Expression Regulation, Viral, HIV Infections, Herpesvirus 1, Human, Inflammation, Membrane Proteins, Mice, Mice, Inbred BALB C, Neurons, Phosphoproteins, Time Factors, Trigeminal Ganglion, Viral Proteins
Show Abstract · Added December 10, 2013
Numerous epidemiological studies have proposed a link between herpes simplex virus (HSV) infection and several common chronic neuropsychiatric and neurodegenerative diseases. Experimental HSV infection of mice can lead to chronic behavioral and neurological deficits and chronic pain. While neuron injury and loss are well-documented consequences of the acute phase of infection, the pathologic consequences of latent HSV infection are poorly understood. To determine whether latent HSV infection can cause neuronal injury in mice, trigeminal ganglia (TG) derived from adult BALB/c mice 1, 12 and 31 weeks after corneal HSV type 1 (HSV-1) inoculation were analyzed for evidence of productive or latent HSV-1 infection, inflammation and changes in neuron size, density and number. We found that latent HSV-1 infection between 12 and 31 weeks after corneal virus inoculation was associated with inflammation and progressive deficits in mean neuron diameter, neuronal nucleus diameter, neuron density and neuron number in the TG relative to mock-infected controls. The extent of neuronal injury during latent infection correlated with the extent of inflammation. These studies demonstrate that latent HSV infection is associated with progressive neuronal pathology and may lead to a better understanding of the role of HSV infections in chronic neurological diseases.
© 2011 The Authors. Brain Pathology © 2011 International Society of Neuropathology.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Residues in the heptad repeat a region of the fusion protein modulate the virulence of Sendai virus in mice.
Luque LE, Bridges OA, Mason JN, Boyd KL, Portner A, Russell CJ
(2010) J Virol 84: 810-21
MeSH Terms: Animals, Cell Line, Cercopithecus aethiops, Female, Gene Expression Regulation, Viral, Lung, Membrane Fusion, Mice, Mice, Inbred DBA, Point Mutation, Respirovirus Infections, Sendai virus, Vero Cells, Viral Fusion Proteins, Virulence
Show Abstract · Added March 20, 2014
While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Proteins of the secretory pathway govern virus productivity during lytic gammaherpesvirus infection.
Mages J, Freimüller K, Lang R, Hatzopoulos AK, Guggemoos S, Koszinowski UH, Adler H
(2008) J Cell Mol Med 12: 1974-89
MeSH Terms: Cell Line, Gammaherpesvirinae, Gene Expression Regulation, Viral, Herpesviridae Infections, Humans, Oligonucleotide Array Sequence Analysis, Proteins, RNA, Small Interfering, RNA, Viral, Secretory Pathway, Viral Proteins, Virus Physiological Phenomena, Virus Replication, Viruses
Show Abstract · Added November 18, 2010
BACKGROUND - Diseases caused by gammaherpesviruses continue to be a challenge for human health and antiviral treatment. Most of the commonly used antiviral drugs are directed against viral gene products. However, the emergence of drug-resistant mutations ma limit the effectiveness of these drugs. Since viruses require a host cell to propagate, the search for host cell targets is an interesting alternative.
METHODS - In this study, we infected three different cell types (fibroblasts, endothelial precursor cells and macrophages with a murine gammaherpesvirus and analysed the host cell response for changes either common to all or unique to a particular cell type using oligonucleotide microarrays.
RESULTS - The analysis revealed a number of genes whose transcription was significantly up- or down-regulated in either one or two of the cell types tested. After infection, only two genes, Lman1 (also known as ERGIC53) an synaptobrevin-like 1 (sybl1) were significantly up-regulated in all three cell types, suggestive for a general role for the virus life cycl independent of the cell type. Both proteins have been implicated in cellular exocytosis and transport of glycoproteins through the secretory pathway. To test the significance of the observed up-regulation, the functionality of these proteins was modulated, and the effect on virus replication was monitored. Inhibition of either Lman1 or sybl1 resulted in a significant reduction in virus production.
CONCLUSIONS - This suggests that proteins of the secretory pathway which appear to be rate limiting for virus production may represent new targets for intervention.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis.
Donaldson EF, Sims AC, Graham RL, Denison MR, Baric RS
(2007) J Virol 81: 6356-68
MeSH Terms: Alanine, Amino Acid Sequence, Animals, Cell Line, Tumor, Cricetinae, Gene Expression Regulation, Viral, Humans, Immunoprecipitation, Kinetics, Molecular Sequence Data, Murine hepatitis virus, Mutation, Polyproteins, RNA Replicase, Sequence Homology, Amino Acid
Show Abstract · Added February 19, 2015
Coronavirus replication requires proteolytic processing of the large polyprotein encoded by ORF1a/ab into putative functional intermediates and eventually approximately 15 mature proteins. The C-terminal ORF1a protein nsp10 colocalizes with viral replication complexes, but its role in transcription/replication is not well defined. To investigate the role of nsp10 in coronavirus transcription/replication, alanine replacements were engineered into a murine hepatitis virus (MHV) infectious clone in place of conserved residues in predicted functional domains or charged amino acid pairs/triplets, and rescued viruses were analyzed for mutant phenotypes. Of the 16 engineered clones, 5 viable viruses were rescued, 3 mutant viruses generated no cytopathic effect but were competent to synthesize viral subgenomic RNAs, and 8 were not viable. All viable mutants showed reductions in growth kinetics and overall viral RNA synthesis, implicating nsp10 as being a cofactor in positive- or negative-strand synthesis. Viable mutant nsp10-E2 was compromised in its ability to process the nascent polyprotein, as processing intermediates were detected in cells infected with this virus that were not detectable in wild-type infections. Mapping the mutations onto the crystal structure of severe acute respiratory syndrome virus nsp10 identified a central core resistant to mutation. Mutations targeting residues in or near either zinc-binding finger generated nonviable phenotypes, demonstrating that both domains are essential to nsp10 function and MHV replication. All mutations resulting in viable phenotypes mapped to loops outside the central core and were characterized by a global decrease in RNA synthesis. These results demonstrate that nsp10 is a critical regulator of coronavirus RNA synthesis and may play an important role in polyprotein processing.
0 Communities
1 Members
0 Resources
15 MeSH Terms