Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 66

Publication Record

Connections

Distribution shapes govern the discovery of predictive models for gene regulation.
Munsky B, Li G, Fox ZR, Shepherd DP, Neuert G
(2018) Proc Natl Acad Sci U S A 115: 7533-7538
MeSH Terms: Gene Expression Regulation, Fungal, Models, Genetic, RNA, Fungal, RNA, Messenger, Saccharomyces cerevisiae
Show Abstract · Added February 5, 2020
Despite substantial experimental and computational efforts, mechanistic modeling remains more predictive in engineering than in systems biology. The reason for this discrepancy is not fully understood. One might argue that the randomness and complexity of biological systems are the main barriers to predictive understanding, but these issues are not unique to biology. Instead, we hypothesize that the specific shapes of rare single-molecule event distributions produce substantial yet overlooked challenges for biological models. We demonstrate why modern statistical tools to disentangle complexity and stochasticity, which assume normally distributed fluctuations or enormous datasets, do not apply to the discrete, positive, and nonsymmetric distributions that characterize mRNA fluctuations in single cells. As an example, we integrate single-molecule measurements and advanced computational analyses to explore mitogen-activated protein kinase induction of multiple stress response genes. Through systematic analyses of different metrics to compare the same model to the same data, we elucidate why standard modeling approaches yield nonpredictive models for single-cell gene regulation. We further explain how advanced tools recover precise, reproducible, and predictive understanding of transcription regulation mechanisms, including gene activation, polymerase initiation, elongation, mRNA accumulation, spatial transport, and decay.
Copyright © 2018 the Author(s). Published by PNAS.
0 Communities
1 Members
0 Resources
MeSH Terms
Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.
Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD
(2018) Nucleic Acids Res 46: 1331-1344
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Biological Evolution, Cdc20 Proteins, Cell Cycle, Gene Expression Regulation, Fungal, Histone-Lysine N-Methyltransferase, Histones, Humans, Lysine, Methylation, Methyltransferases, Nocodazole, Protein Processing, Post-Translational, Proteolysis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Tubulin Modulators
Show Abstract · Added October 30, 2019
Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.
0 Communities
1 Members
0 Resources
MeSH Terms
MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen Aspergillus fumigatus.
Valsecchi I, Sarikaya-Bayram Ö, Wong Sak Hoi J, Muszkieta L, Gibbons J, Prevost MC, Mallet A, Krijnse-Locker J, Ibrahim-Granet O, Mouyna I, Carr P, Bromley M, Aimanianda V, Yu JH, Rokas A, Braus GH, Saveanu C, Bayram Ö, Latgé JP
(2017) Mol Microbiol 105: 880-900
MeSH Terms: Aspergillosis, Aspergillus fumigatus, Cell Wall, Fungal Proteins, Gene Deletion, Gene Expression Regulation, Fungal, Humans, Membrane Proteins, Sequence Deletion, Spores, Fungal, Transcription Factors, Virulence
Show Abstract · Added March 21, 2018
Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.
© 2017 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
12 MeSH Terms
WetA bridges cellular and chemical development in Aspergillus flavus.
Wu MY, Mead ME, Kim SC, Rokas A, Yu JH
(2017) PLoS One 12: e0179571
MeSH Terms: Aspergillus flavus, Cell Survival, Fungal Proteins, Gene Expression Regulation, Fungal, Genes, Fungal, Hyphae, Reproduction, Asexual
Show Abstract · Added March 21, 2018
Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3)-glucan, β-(1,3)-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Nup100 regulates replicative life span by mediating the nuclear export of specific tRNAs.
Lord CL, Ospovat O, Wente SR
(2017) RNA 23: 365-377
MeSH Terms: Active Transport, Cell Nucleus, Basic-Leucine Zipper Transcription Factors, Blotting, Northern, Cell Division, Cell Nucleus, Culture Media, Gene Expression Regulation, Fungal, In Situ Hybridization, Fluorescence, Karyopherins, Nuclear Pore, Nuclear Pore Complex Proteins, RNA, Fungal, RNA, Transfer, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors
Show Abstract · Added April 14, 2017
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of We previously reported that deletion of the nonessential gene increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of Δ mutants. Protein levels of the transcription factor Gcn4 are increased when is deleted, and is required for the elevated life spans of Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of Δ and Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the life span.
© 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in Aspergillus.
Lind AL, Smith TD, Saterlee T, Calvo AM, Rokas A
(2016) G3 (Bethesda) 6: 4023-4033
MeSH Terms: Aspergillus, Cluster Analysis, Fungal Proteins, Gene Expression Profiling, Gene Expression Regulation, Fungal, Multigene Family, Secondary Metabolism, Temperature
Show Abstract · Added April 6, 2017
Sensing and responding to environmental cues is critical to the lifestyle of filamentous fungi. How environmental variation influences fungi to produce a wide diversity of ecologically important secondary metabolites (SMs) is not well understood. To address this question, we first examined changes in global gene expression of the opportunistic human pathogen, Aspergillus fumigatus, after exposure to different temperature conditions. We found that 11 of the 37 SM gene clusters in A. fumigatus were expressed at higher levels at 30° than at 37°. We next investigated the role of the light-responsive Velvet complex in environment-dependent gene expression by examining temperature-dependent transcription profiles in the absence of two key members of the Velvet protein complex, VeA and LaeA We found that the 11 temperature-regulated SM gene clusters required VeA at 37° and LaeA at both 30 and 37° for wild-type levels of expression. Interestingly, four SM gene clusters were regulated by VeA at 37° but not at 30°, and two additional ones were regulated by VeA at both temperatures but were substantially less so at 30°, indicating that the role of VeA and, more generally of the Velvet complex, in the regulation of certain SM gene clusters is temperature-dependent. Our findings support the hypothesis that fungal secondary metabolism is regulated by an intertwined network of transcriptional regulators responsive to multiple environmental factors.
Copyright © 2016 Lind et al.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast.
Guet D, Burns LT, Maji S, Boulanger J, Hersen P, Wente SR, Salamero J, Dargemont C
(2015) Nat Commun 6: 8882
MeSH Terms: Aptamers, Nucleotide, Cell Nucleus, Gene Expression Regulation, Fungal, Molecular Imaging, RNA, Fungal, RNA, Messenger, Saccharomyces cerevisiae, Transcription, Genetic
Show Abstract · Added February 15, 2016
Although many factors required for the formation of export-competent mRNPs have been described, an integrative view of the spatiotemporal coordinated cascade leading mRNPs from their site of transcription to their site of nuclear exit, at a single cell level, is still partially missing due to technological limitations. Here we report that the RNA Spinach aptamer is a powerful tool for mRNA imaging in live S. cerevisiae with high spatial-temporal resolution and no perturbation of the mRNA biogenesis properties. Dedicated image processing workflows are developed to allow detection of very low abundance of transcripts, accurate quantitative dynamic studies, as well as to provide a localization precision close to 100 nm at consistent time scales. Combining these approaches has provided a state-of-the-art analysis of the osmotic shock response in live yeast by localizing induced transcription factors, target gene loci and corresponding transcripts.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.
Willet AH, McDonald NA, Gould KL
(2015) Curr Opin Microbiol 28: 46-52
MeSH Terms: Actins, Cell Division, Cell Wall, Cytokinesis, Cytoskeletal Proteins, Gene Expression Regulation, Fungal, Myosins, Profilins, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added February 4, 2016
The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
In-depth comparative proteomic analysis of yeast proteome using iTRAQ and SWATH based MS.
Basak T, Bhat A, Malakar D, Pillai M, Sengupta S
(2015) Mol Biosyst 11: 2135-43
MeSH Terms: Chromatography, Liquid, Fungal Proteins, Gene Expression Regulation, Fungal, Proteome, Proteomics, Saccharomyces cerevisiae, Tandem Mass Spectrometry
Show Abstract · Added November 3, 2017
Quantitative proteomics using LC-MS has emerged as an essential tool for addressing different biological questions. Various labelling methods have been effectively employed for quantitative proteomics studies. However, these are fraught with several challenges, including reproducibility and the number of samples that can be analysed at a given time. To this end, unlabelled proteomics is a promising field, and the recently developed sequential window acquisition of all theoretical fragment ion spectra (SWATH-MS) method aims to address these limitations. In this study, we compared SWATH-MS to isobaric tag for relative and absolute quantitation (iTRAQ), a widely used labelled method for relative quantitation. For this, we used yeast, Saccharomyces cerevisiae, since almost all its proteins are identified. More importantly, the abundance of each protein is well documented. We found that although a similar number of proteins could be quantitated using the two techniques, SWATH had the advantage of quantifying a larger percentage of low abundance proteins (below 60 ppm). Thus, based on our analysis, we believe that these two techniques are complementary and can synergistically improve the number of quantifiable proteins. SWATH's ability to quantify low abundant proteins could be an asset in biomarker discovery studies.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.
Eidem HR, McGary KL, Rokas A
(2015) Mol Biol Evol 32: 1449-55
MeSH Terms: Evolution, Molecular, Fungi, Gene Expression Regulation, Fungal, Genes, Fungal, Genetic Linkage, Humans, Metabolic Networks and Pathways, Selection, Genetic
Show Abstract · Added February 19, 2015
Reduced metabolic efficiency, toxic intermediate accumulation, and deficits of molecular building blocks, which all stem from disruptions of flux through metabolic pathways, reduce organismal fitness. Although these represent shared selection pressures across organisms, the genetic signatures of the responses to them may differ. In fungi, a frequently observed signature is the physical linkage of genes from the same metabolic pathway. In contrast, human metabolic genes are rarely tightly linked; rather, they tend to show tissue-specific coexpression. We hypothesized that the physical linkage of fungal metabolic genes and the tissue-specific coexpression of human metabolic genes are divergent yet analogous responses to the range of selective pressures imposed by disruptions of flux. To test this, we examined the degree to which the human homologs of physically linked metabolic genes in fungi (fungal linked homologs or FLOs) are coexpressed across six human tissues. We found that FLOs are significantly more correlated in their expression profiles across human tissues than other metabolic genes. We obtained similar results in analyses of the same six tissues from chimps, gorillas, orangutans, and macaques. We suggest that when selective pressures remain stable across large evolutionary distances, evidence of selection in a given evolutionary lineage can become a highly reliable predictor of the signature of selection in another, even though the specific adaptive response in each lineage is markedly different.
© The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
2 Members
0 Resources
8 MeSH Terms