Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 60

Publication Record

Connections

The Pan-Cancer Landscape of Coamplification of the Tyrosine Kinases KIT, KDR, and PDGFRA.
Disel U, Madison R, Abhishek K, Chung JH, Trabucco SE, Matos AO, Frampton GM, Albacker LA, Reddy V, Karadurmus N, Benson A, Webster J, Paydas S, Cabanillas R, Nangia C, Ozturk MA, Millis SZ, Pal SK, Wilky B, Sokol ES, Gay LM, Soman S, Ganesan S, Janeway K, Stephens PJ, Zhu VW, Ou SI, Lovly CM, Gounder M, Schrock AB, Ross JS, Miller VA, Klempner SJ, Ali SM
(2020) Oncologist 25: e39-e47
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Child, Child, Preschool, Gene Amplification, Humans, Middle Aged, Neoplasms, Receptor Protein-Tyrosine Kinases, Receptor, Platelet-Derived Growth Factor alpha, Vascular Endothelial Growth Factor Receptor-2, Young Adult
Show Abstract · Added September 10, 2020
PURPOSE - Amplifications of receptor tyrosine kinases (RTKS) are therapeutic targets in multiple tumor types (e.g. HER2 in breast cancer), and amplification of the chromosome 4 segment harboring the three RTKs KIT, PDGFRA, and KDR (4q12amp) may be similarly targetable. The presence of 4q12amp has been sporadically reported in small tumor specific series but a large-scale analysis is lacking. We assess the pan-cancer landscape of 4q12amp and provide early clinical support for the feasibility of targeting this amplicon.
EXPERIMENTAL DESIGN - Tumor specimens from 132,872 patients with advanced cancer were assayed with hybrid capture based comprehensive genomic profiling which assays 186-315 genes for all classes of genomic alterations, including amplifications. Baseline demographic data were abstracted, and presence of 4q12amp was defined as 6 or more copies of KIT/KDR/PDGFRA. Concurrent alterations and treatment outcomes with matched therapies were explored in a subset of cases.
RESULTS - Overall 0.65% of cases harbored 4q12amp at a median copy number of 10 (range 6-344). Among cancers with >100 cases in this series, glioblastomas, angiosarcomas, and osteosarcomas were enriched for 4q12amp at 4.7%, 4.8%, and 6.4%, respectively (all p < 0.001), giving an overall sarcoma (n = 6,885) incidence of 1.9%. Among 99 pulmonary adenocarcinoma cases harboring 4q12amp, 50 (50%) lacked any other known driver of NSLCC. Four index cases plus a previously reported case on treatment with empirical TKIs monotherapy had stable disease on average exceeding 20 months.
CONCLUSION - We define 4q12amp as a significant event across the pan-cancer landscape, comparable to known pan-cancer targets such as NTRK and microsatellite instability, with notable enrichment in several cancers such as osteosarcoma where standard treatment is limited. The responses to available TKIs observed in index cases strongly suggest 4q12amp is a druggable oncogenic target across cancers that warrants a focused drug development strategy.
IMPLICATIONS FOR PRACTICE - Coamplification of the receptor tyrosine kinases (rtks) KIT/KDR/PDGFRA (4q12amp) is present broadly across cancers (0.65%), with enrichment in osteosarcoma and gliomas. Evidence for this amplicon having an oncogenic role is the mutual exclusivity of 4q12amp to other known drivers in 50% of pulmonary adenocarcinoma cases. Furthermore, preliminary clinical evidence for driver status comes from four index cases of patients empirically treated with commercially available tyrosine kinase inhibitors with activity against KIT/KDR/PDGFRA who had stable disease for 20 months on average. The sum of these lines of evidence suggests further clinical and preclinical investigation of 4q12amp is warranted as the possible basis for a pan-cancer drug development strategy.
© 2019 The Authors. The Oncologist published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Identification of Targetable Recurrent MAP3K8 Rearrangements in Melanomas Lacking Known Driver Mutations.
Lehmann BD, Shaver TM, Johnson DB, Li Z, Gonzalez-Ericsson PI, Sánchez V, Shyr Y, Sanders ME, Pietenpol JA
(2019) Mol Cancer Res 17: 1842-1853
MeSH Terms: Algorithms, Cell Line, Tumor, Databases, Genetic, Female, Gene Amplification, Gene Expression Regulation, Neoplastic, Humans, MAP Kinase Kinase Kinases, Male, Melanoma, Protein Kinase Inhibitors, Proto-Oncogene Proteins, Sequence Analysis, RNA, Sequence Deletion, Survival Analysis, Translocation, Genetic, Up-Regulation
Show Abstract · Added March 30, 2020
Melanomas are characterized by driver and loss-of-function mutations that promote mitogen-activated protein kinase (MAPK) signaling. MEK inhibitors are approved for use in BRAF-mutated melanoma; however, early-phase clinical trials show occasional responses in driver-negative melanoma, suggesting other alterations conferring MAPK/ERK dependency. To identify additional structural alterations in melanoma, we evaluated RNA-Seq from a set of known MAPK/ERK regulators using a novel population-based algorithm in The Cancer Genome Atlas (TCGA). We identified recurrent MAP3K8 rearrangements in 1.7% of melanomas in TCGA, occurring in more than 15% of tumors without known driver mutations (, and ). Using an independent tumor set, we validated a similar rearrangement frequency by FISH. MAP3K8-rearranged melanomas exhibit a low mutational burden and absence of typical UV-mutational patterns. We identified two melanoma cell lines that harbor endogenous truncating MAP3K8 rearrangements that demonstrate exquisite dependency. Rearrangement and amplification of the MAP3K8 locus in melanoma cells result in increased levels of a truncated, active MAP3K8 protein; oncogenic dependency on the aberrant MAP3K8; and a concomitant resistance to BRAF inhibition and sensitivity to MEK or ERK1/2 inhibition. Our findings reveal and biochemically characterize targetable oncogenic MAP3K8 truncating rearrangements in driver mutation-negative melanoma, and provide insight to therapeutic approaches for patients with these tumors. These data provide rationale for using MEK or ERK inhibitors in a subset of driver-negative, MAPK/ERK-dependent melanomas harboring truncating MAP3K8 rearrangements. IMPLICATIONS: This is the first mechanistic study and therapeutic implications of truncating MAP3K8 rearrangements in driver-negative melanoma.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics.
Fan PD, Narzisi G, Jayaprakash AD, Venturini E, Robine N, Smibert P, Germer S, Yu HA, Jordan EJ, Paik PK, Janjigian YY, Chaft JE, Wang L, Jungbluth AA, Middha S, Spraggon L, Qiao H, Lovly CM, Kris MG, Riely GJ, Politi K, Varmus H, Ladanyi M
(2018) Proc Natl Acad Sci U S A 115: E6030-E6038
MeSH Terms: Cell Line, Tumor, DNA Transposable Elements, Drug Resistance, Neoplasm, Enzyme Inhibitors, ErbB Receptors, Gene Amplification, Gene Expression Regulation, Neoplastic, Humans, Lung Neoplasms, Proto-Oncogene Proteins c-fyn, Proto-Oncogene Proteins c-yes, Proto-Oncogene Proteins pp60(c-src)
Show Abstract · Added September 10, 2020
In ∼30% of patients with -mutant lung adenocarcinomas whose disease progresses on EGFR inhibitors, the basis for acquired resistance remains unclear. We have integrated transposon mutagenesis screening in an -mutant cell line and clinical genomic sequencing in cases of acquired resistance to identify mechanisms of resistance to EGFR inhibitors. The most prominent candidate genes identified by insertions in or near the genes during the screen were , a gene whose amplification is known to mediate resistance to EGFR inhibitors, and the gene encoding the Src family kinase YES1. Cell clones with transposon insertions that activated expression of exhibited resistance to all three generations of EGFR inhibitors and sensitivity to pharmacologic and siRNA-mediated inhibition of Analysis of clinical genomic sequencing data from cases of acquired resistance to EGFR inhibitors revealed amplification of in five cases, four of which lacked any other known mechanisms of resistance. Preinhibitor samples, available for two of the five patients, lacked amplification. None of 136 postinhibitor samples had detectable amplification of other Src family kinases ( and ). amplification was also found in 2 of 17 samples from fusion-positive lung cancer patients who had progressed on ALK TKIs. Taken together, our findings identify acquired amplification of as a recurrent and targetable mechanism of resistance to EGFR inhibition in -mutant lung cancers and demonstrate the utility of transposon mutagenesis in discovering clinically relevant mechanisms of drug resistance.
Copyright © 2018 the Author(s). Published by PNAS.
0 Communities
1 Members
0 Resources
MeSH Terms
Association of FGFR1 with ERα Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER Breast Cancer.
Formisano L, Stauffer KM, Young CD, Bhola NE, Guerrero-Zotano AL, Jansen VM, Estrada MM, Hutchinson KE, Giltnane JM, Schwarz LJ, Lu Y, Balko JM, Deas O, Cairo S, Judde JG, Mayer IA, Sanders M, Dugger TC, Bianco R, Stricker T, Arteaga CL
(2017) Clin Cancer Res 23: 6138-6150
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Disease Models, Animal, Drug Resistance, Neoplasm, Estrogen Receptor Modulators, Estrogen Receptor alpha, Female, Fibroblast Growth Factors, Gene Amplification, Gene Expression Regulation, Neoplastic, Humans, Mice, Molecular Targeted Therapy, Neoplasm Staging, Protein Kinase Inhibitors, Protein Transport, Receptor, Fibroblast Growth Factor, Type 1, Signal Transduction, Transcription, Genetic
Show Abstract · Added March 14, 2018
amplification occurs in approximately 15% of estrogen receptor-positive (ER) human breast cancers. We investigated mechanisms by which amplification confers antiestrogen resistance to ER breast cancer. ER tumors from patients treated with letrozole before surgery were subjected to Ki67 IHC, FGFR1 FISH, and RNA sequencing (RNA-seq). ER/-amplified breast cancer cells, and patient-derived xenografts (PDX) were treated with FGFR1 siRNA or the FGFR tyrosine kinase inhibitor lucitanib. Endpoints were cell/xenograft growth, FGFR1/ERα association by coimmunoprecipitation and proximity ligation, ER genomic activity by ChIP sequencing, and gene expression by RT-PCR. ER/-amplified tumors in patients treated with letrozole maintained cell proliferation (Ki67). Estrogen deprivation increased total and nuclear FGFR1 and FGF ligands expression in ER/amplified primary tumors and breast cancer cells. In estrogen-free conditions, FGFR1 associated with ERα in tumor cell nuclei and regulated the transcription of ER-dependent genes. This association was inhibited by a kinase-dead FGFR1 mutant and by treatment with lucitanib. ChIP-seq analysis of estrogen-deprived ER/-amplified cells showed binding of FGFR1 and ERα to DNA. Treatment with fulvestrant and/or lucitanib reduced FGFR1 and ERα binding to DNA. RNA-seq data from -amplified patients' tumors treated with letrozole showed enrichment of estrogen response and E2F target genes. Finally, growth of ER/amplified cells and PDXs was more potently inhibited by fulvestrant and lucitanib combined than each drug alone.s These data suggest the ERα pathway remains active in estrogen-deprived ER/-amplified breast cancers. Therefore, these tumors are endocrine resistant and should be candidates for treatment with combinations of ER and FGFR antagonists. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis.
Morrison Joly M, Williams MM, Hicks DJ, Jones B, Sanchez V, Young CD, Sarbassov DD, Muller WJ, Brantley-Sieders D, Cook RS
(2017) Breast Cancer Res 19: 74
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Disease Models, Animal, Female, Gene Amplification, Heterografts, Humans, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Transgenic, Neoplasm Metastasis, Neoplasm Staging, Prognosis, Proto-Oncogene Proteins c-akt, Rapamycin-Insensitive Companion of mTOR Protein, Receptor, ErbB-2, Signal Transduction, rac1 GTP-Binding Protein, rho Guanine Nucleotide Dissociation Inhibitor beta
Show Abstract · Added April 15, 2019
BACKGROUND - The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear.
METHODS - Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays.
RESULTS - We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility.
CONCLUSION - These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.
0 Communities
1 Members
0 Resources
MeSH Terms
Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence.
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL
(2016) Sci Transl Med 8: 334ra53
MeSH Terms: Antineoplastic Agents, Cell Line, Tumor, Cell Proliferation, Chromosomes, Human, Pair 9, Cohort Studies, Female, Gene Amplification, Gene Knockdown Techniques, Genetic Loci, Humans, Janus Kinase 2, Middle Aged, STAT3 Transcription Factor, STAT6 Transcription Factor, Signal Transduction, Spheroids, Cellular, Triple Negative Breast Neoplasms
Show Abstract · Added April 6, 2017
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
Copyright © 2016, American Association for the Advancement of Science.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Liposarcomatous differentiation in malignant phyllodes tumours is unassociated with MDM2 or CDK4 amplification.
Lyle PL, Bridge JA, Simpson JF, Cates JM, Sanders ME
(2016) Histopathology 68: 1040-5
MeSH Terms: Adult, Aged, Aged, 80 and over, Biomarkers, Tumor, Breast Neoplasms, Cell Differentiation, Cyclin-Dependent Kinase 4, Female, Gene Amplification, Humans, In Situ Hybridization, Fluorescence, Liposarcoma, Middle Aged, Nerve Sheath Neoplasms, Phenotype, Phyllodes Tumor, Proto-Oncogene Proteins c-mdm2
Show Abstract · Added February 15, 2016
AIMS - Breast sarcomas are rare, usually occurring in the setting of malignant phyllodes tumour (MPT). Heterologous differentiation commonly resembles well-differentiated or pleomorphic liposarcoma. In extramammary sites, these subtypes have different biological behaviours and distinct genetic alterations: MDM2 and CDK4 amplification in well-differentiated liposarcoma, and polyploidy with complex structural rearrangements in pleomorphic liposarcoma. The aim of this study was to investigate foci resembling well-differentiated liposarcoma in MPT for MDM2 and CDK4 amplification.
METHODS AND RESULTS - We evaluated the clinicopathological characteristics of MPTs received by the Vanderbilt Breast Consultation Service containing components resembling well-differentiated or pleomorphic liposarcoma. Cases with available tissue blocks were subjected to fluorescence in-situ hybridization with MDM2 and CDK4 probes. Thirty-eight MPTs with liposarcomatous components were available for review. The mean patient age was 49.8 years (range 26-84 years). In addition to well-differentiated liposarcoma, the following components were also present: high-grade undifferentiated sarcoma (n = 9; 23.7%), pleomorphic liposarcoma (n = 4; 10.5%), non-high-grade sarcoma not otherwise specified (n = 22; 57.9%), and malignant peripheral nerve sheath tumour-like (n = 2; 5.2%). Among 10 cases tested, none showed amplification of MDM2 or CDK4.
CONCLUSIONS - This study examined molecular changes in the well-differentiated liposarcomatous components of MPT. Despite histological similarity to well-differentiated liposarcoma of soft tissues, liposarcomatous differentiation in MPT lacks the molecular phenotype characteristic of extramammary well-differentiated liposarcoma.
© 2015 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
17 MeSH Terms
PIK3CA mutations in Peruvian patients with HER2-amplified and triple negative non-metastatic breast cancers.
Castaneda CA, Lopez-Ilasaca M, Pinto JA, Chirinos-Arias M, Doimi F, Neciosup SP, Rojas KI, Vidaurre T, Balko JM, Arteaga CL, Gomez HL
(2014) Hematol Oncol Stem Cell Ther 7: 142-8
MeSH Terms: Biomarkers, Tumor, Breast Neoplasms, Class I Phosphatidylinositol 3-Kinases, Cohort Studies, Exons, Female, Gene Amplification, Humans, Middle Aged, Mutation, Neoadjuvant Therapy, Peru, Phosphatidylinositol 3-Kinases, Receptor, ErbB-2, Triple Negative Breast Neoplasms
Show Abstract · Added April 6, 2017
PURPOSE - To determine the frequency of PIK3CA mutations in a Peruvian cohort with HER2-amplified and triple negative breast cancers (TNBC).
METHODS - We analyzed two cohorts of 134 primary non-metastatic breast cancer patients from Peru. Cohorts consisted of 51 hormone receptors (+)/HER2-amplified breast tumor patients surgically resected as first treatment included in the ALTTO trial (ALTTO cohort) and 81 TNBC patients with residual disease after neoadjuvant treatment (neoadjuvant cohort). Genomic DNA was extracted from paraffin-embedded tumor samples. Samples from the ALTTO and neoadjuvant cohorts were taken at biopsies and from residual tumors, respectively. PIK3CA mutations were detected by sequencing DNA fragments obtained by PCR amplification of exons and their flanking introns. All of the detected PIK3CA mutations were confirmed in a second independent run of sample testing.
RESULTS - PIK3CA mutations were present in 21/134 cases (15.7%). Mutations in exon 9 and 20 were present in 10/134 (7.5%) and 11/134 (8.2%), respectively. No cases had mutations in both exons. Mutations in exon 9 consisted of E545A (seven cases), E545K (two cases) and E545Q (one case); while in exon 20, mutations consisted of H1047R (10 cases) and H1047L (one case). Compared to TNBC patients, HER2-amplified patients were more likely to have PIK3CA mutated (23% vs 9.6%; P=0.034). There were no associations between mutational status of PIK3CA with estrogen receptor status (P=0.731), progesterone receptor status (P=0.921), age (P=0.646), nodal status (P=0.240) or histological grade (P=1.00). No significant associations were found between PIK3CA mutational status and clinicopathological features.
CONCLUSIONS - We found a similar frequency of PIK3CA mutations to that reported in other series. Although we did not include HR+/HER2 patients, those with HER2-amplified tumors were more likely to present PIK3CA mutations compared to patients with triple negative tumors.
Copyright © 2014 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets.
Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS, Owens P, Sanders ME, Kuba MG, Sánchez V, Kurupi R, Moore PD, Pinto JA, Doimi FD, Gómez H, Horiuchi D, Goga A, Lehmann BD, Bauer JA, Pietenpol JA, Ross JS, Palmer GA, Yelensky R, Cronin M, Miller VA, Stephens PJ, Arteaga CL
(2014) Cancer Discov 4: 232-45
MeSH Terms: Antineoplastic Combined Chemotherapy Protocols, Cell Line, Tumor, Cluster Analysis, DNA Copy Number Variations, Drug Resistance, Neoplasm, Female, Gene Amplification, Gene Expression Profiling, Genes, myc, Humans, Ki-67 Antigen, Myeloid Cell Leukemia Sequence 1 Protein, Neoadjuvant Therapy, Neoplasm, Residual, Prognosis, Treatment Outcome, Triple Negative Breast Neoplasms
Show Abstract · Added March 7, 2014
UNLABELLED - Neoadjuvant chemotherapy (NAC) induces a pathologic complete response (pCR) in approximately 30% of patients with triple-negative breast cancers (TNBC). In patients lacking a pCR, NAC selects a subpopulation of chemotherapy-resistant tumor cells. To understand the molecular underpinnings driving treatment-resistant TNBCs, we performed comprehensive molecular analyses on the residual disease of 74 clinically defined TNBCs after NAC, including next-generation sequencing (NGS) on 20 matched pretreatment biopsies. Combined NGS and digital RNA expression analysis identified diverse molecular lesions and pathway activation in drug-resistant tumor cells. Ninety percent of the tumors contained a genetic alteration potentially treatable with a currently available targeted therapy. Thus, profiling residual TNBCs after NAC identifies targetable molecular lesions in the chemotherapy-resistant component of the tumor, which may mirror micrometastases destined to recur clinically. These data can guide biomarker-driven adjuvant studies targeting these micrometastases to improve the outcome of patients with TNBC who do not respond completely to NAC.
SIGNIFICANCE - This study demonstrates the spectrum of genomic alterations present in residual TNBC after NAC. Because TNBCs that do not achieve a CR after NAC are likely to recur as metastatic disease at variable times after surgery, these alterations may guide the selection of targeted therapies immediately after mastectomy before these metastases become evident.
2013 AACR
1 Communities
9 Members
0 Resources
17 MeSH Terms
Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2.
Rexer BN, Ghosh R, Narasanna A, Estrada MV, Chakrabarty A, Song Y, Engelman JA, Arteaga CL
(2013) Clin Cancer Res 19: 5390-401
MeSH Terms: Amino Acid Substitution, Animals, Antineoplastic Agents, Breast Neoplasms, Catalysis, Cell Line, Tumor, Cell Proliferation, Cell Survival, Codon, Disease Models, Animal, Drug Resistance, Neoplasm, ErbB Receptors, Female, Gene Amplification, Gene Expression, Humans, Ligands, Mice, Mutation, Phosphatidylinositol 3-Kinases, Protein Kinase Inhibitors, Receptor, ErbB-2, Receptor, ErbB-3, Xenograft Model Antitumor Assays
Show Abstract · Added September 3, 2013
PURPOSE - Mutations in receptor tyrosine kinase (RTK) genes can confer resistance to receptor-targeted therapies. A T798M mutation in the HER2 oncogene has been shown to confer resistance to the tyrosine kinase inhibitor (TKI) lapatinib. We studied the mechanisms of HER2-T798M-induced resistance to identify potential strategies to overcome that resistance.
EXPERIMENTAL DESIGN - HER2-T798M was stably expressed in BT474 and MCF10A cells. Mutant cells and xenografts were evaluated for effects of the mutation on proliferation, signaling, and tumor growth after treatment with combinations of inhibitors targeting the EGFR/HER2/HER3/PI3K axis.
RESULTS - A low 3% allelic frequency of the T798M mutant shifted 10-fold the IC50 of lapatinib. In mutant-expressing cells, lapatinib did not block basal phosphorylation of HER2, HER3, AKT, and ERK1/2. In vitro kinase assays showed increased autocatalytic activity of HER2-T798M. HER3 association with PI3K p85 was increased in mutant-expressing cells. BT474-T798M cells were also resistant to the HER2 antibody trastuzumab. These cells were sensitive to the pan-PI3K inhibitors BKM120 and XL147 and the irreversible HER2/EGFR TKI afatinib but not the MEK1/2 inhibitor CI-1040, suggesting continued dependence of the mutant cells on ErbB receptors and downstream PI3K signaling. BT474-T798M cells showed increased expression of the EGFR ligands EGF, TGFα, amphiregulin, and HB-EGF. Addition of the EGFR neutralizing antibody cetuximab or lapatinib restored trastuzumab sensitivity of BT474-T798M cells and xenografts, suggesting that increased EGFR ligand production was causally associated with drug resistance.
CONCLUSIONS - Simultaneous blockade of HER2 and EGFR should be an effective treatment strategy against HER2 gene-amplified breast cancer cells harboring T798M mutant alleles.
©2013 AACR.
0 Communities
3 Members
0 Resources
24 MeSH Terms