Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 18

Publication Record

Connections

Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models.
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K
(2016) Hum Mol Genet 25: 3699-3714
MeSH Terms: Animals, Disease Models, Animal, Drosophila, Drosophila Proteins, Galactokinase, Galactosemias, Glycosylation, Humans, Neuromuscular Junction, Synapses, UTP-Hexose-1-Phosphate Uridylyltransferase, Wnt Signaling Pathway
Show Abstract · Added March 29, 2017
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Meclizine Preconditioning Protects the Kidney Against Ischemia-Reperfusion Injury.
Kishi S, Campanholle G, Gohil VM, Perocchi F, Brooks CR, Morizane R, Sabbisetti V, Ichimura T, Mootha VK, Bonventre JV
(2015) EBioMedicine 2: 1090-101
MeSH Terms: Acute Kidney Injury, Adenosine Triphosphate, Animals, Cell Respiration, Cytochromes c, Deoxyglucose, Disease Models, Animal, Epithelial Cells, Ethanolamines, Galactose, Glycolysis, Humans, Inflammation, Ischemic Preconditioning, Kidney, Kidney Tubules, L-Lactate Dehydrogenase, LLC-PK1 Cells, Male, Meclizine, Mice, Inbred C57BL, Mitochondria, Protective Agents, Reperfusion Injury, Sodium Cyanide, Swine, Up-Regulation
Show Abstract · Added September 12, 2016
Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a 'nutrient-sensitized' chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo.
1 Communities
1 Members
0 Resources
27 MeSH Terms
Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model.
Jumbo-Lucioni P, Parkinson W, Broadie K
(2014) Dis Model Mech 7: 1365-78
MeSH Terms: Animals, Animals, Genetically Modified, Behavior, Animal, Disease Models, Animal, Drosophila, Galactose, Galactosemias, Genotype, Glycosylation, Humans, Mutation, Neuromuscular Junction, RNA Interference, Signal Transduction, Synapses
Show Abstract · Added March 29, 2017
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.
© 2014. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin.
Geng F, Tansey WP
(2012) Proc Natl Acad Sci U S A 109: 6060-5
MeSH Terms: Adenosine Triphosphatases, Blotting, Western, Chromatin, Chromatin Immunoprecipitation, Galactose, Mutation, Proteasome Endopeptidase Complex, Protein Binding, Protein Subunits, Reverse Transcriptase Polymerase Chain Reaction, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors, Trans-Activators, Transcription, Genetic
Show Abstract · Added September 5, 2013
It has recently become clear that components of the proteasome are recruited to sites of gene transcription. Prevailing evidence suggests that the transcriptionally relevant form of the proteasome is a subcomplex of 19S base proteins, which functions as an ATP-dependent chaperone that influences transcriptional processes. Despite this notion, compelling evidence for a transcription-dedicated 19S base complex is lacking, and 20S proteasome subunits have been shown to associate with chromatin in some contexts. To gain insight into the form of the proteasome that is recruited to chromatin, we assembled a panel of highly specific antibodies that recognize native yeast proteasome subunits in chromatin immunoprecipitation assays. Using these reagents, we show that components from the three major subassemblies of the proteasome--19S lid, 19S base, and 20S core--associate with the activated GAL10 gene in yeast in a virtually indistinguishable manner. We find that proteasome subunits Rpt1, Rpt4, Rpn8, Rpn12, Pre6, and Pre10 are recruited to GAL10 rapidly upon galactose induction. These subunits associate with the entire transcribed portion of GAL10, display near-identical patterns of distribution, and dissociate from chromatin rapidly once transcription is shut down. We also find that proteasome subunits are enriched at telomeres and at genes transcribed by RNA polymerase III. Our data suggest that the transcriptionally relevant form of the proteasome is the canonical 26S complex.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Assessing neuronal bioenergetic status.
Zeiger SL, Stankowski JN, McLaughlin B
(2011) Methods Mol Biol 758: 215-35
MeSH Terms: Adenosine Triphosphate, Animals, Brain, Cell Extracts, Cell Hypoxia, Cell Line, Tumor, Cell Survival, Embryo, Mammalian, Energy Metabolism, Female, Galactose, Glucose, Humans, L-Lactate Dehydrogenase, Lactic Acid, Neurons, Pregnancy, Pyruvic Acid, Rats
Show Abstract · Added January 26, 2015
Drug discovery and therapeutic development for disorders of the central nervous system (CNS) represents one of the largest unmet markets in modern medicine. We have increasingly recognized that the lack of stringent assessment of mitochondrial function during the discovery process has resulted in drug recalls, black box warnings, and an urgent need to understand the metabolic liability of small molecules in neural systems. Given that the brain is the most energetically demanding organ, even modest perturbations in neuronal energetic pathways have been shown to impact growth, signaling, connectivity, and the restorative capacity of the CNS. In this work, we describe several tools to assess metabolic activity of primary neuronal cultures and neural cell lines using an acute model of injury induced by oxygen glucose deprivation. Methods include the measurement of total ATP and NADH, enzymatic assessment of lactate production by anaerobic respiration, as well as viability assays. We also present a modified screening method for assessing aerobic respiration of immortalized cell lines using galactose challenge.
1 Communities
1 Members
0 Resources
19 MeSH Terms
External control of the GAL network in S. cerevisiae: a view from control theory.
Yang R, Lenaghan SC, Wikswo JP, Zhang M
(2011) PLoS One 6: e19353
MeSH Terms: Computational Biology, Feedback, Galactose, Gene Expression Regulation, Fungal, Gene Regulatory Networks, Kinetics, Models, Biological, Models, Genetic, Models, Statistical, Models, Theoretical, RNA, Messenger, Reproducibility of Results, Saccharomyces cerevisiae
Show Abstract · Added May 29, 2014
While there is a vast literature on the control systems that cells utilize to regulate their own state, there is little published work on the formal application of control theory to the external regulation of cellular functions. This paper chooses the GAL network in S. cerevisiae as a well understood benchmark example to demonstrate how control theory can be employed to regulate intracellular mRNA levels via extracellular galactose. Based on a mathematical model reduced from the GAL network, we have demonstrated that a galactose dose necessary to drive and maintain the desired GAL genes' mRNA levels can be calculated in an analytic form. And thus, a proportional feedback control can be designed to precisely regulate the level of mRNA. The benefits of the proposed feedback control are extensively investigated in terms of stability and parameter sensitivity. This paper demonstrates that feedback control can both significantly accelerate the process to precisely regulate mRNA levels and enhance the robustness of the overall cellular control system.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi.
Slot JC, Rokas A
(2010) Proc Natl Acad Sci U S A 107: 10136-41
MeSH Terms: Ascomycota, Base Sequence, Biological Evolution, Candida, Cryptococcus, DNA, Fungal, Evolution, Molecular, Fungi, Galactose, Gene Transfer, Horizontal, Genes, Fungal, Models, Genetic, Multigene Family, Phylogeny, Saccharomyces, Schizosaccharomyces
Show Abstract · Added May 30, 2014
A notable characteristic of fungal genomes is that genes involved in successive steps of a metabolic pathway are often physically linked or clustered. To investigate how such clusters of functionally related genes are assembled and maintained, we examined the evolution of gene sequences and order in the galactose utilization (GAL) pathway in whole-genome data from 80 diverse fungi. We found that GAL gene clusters originated independently and by different mechanisms in three unrelated yeast lineages. Specifically, the GAL cluster found in Saccharomyces and Candida yeasts originated through the relocation of native unclustered genes, whereas the GAL cluster of Schizosaccharomyces yeasts was acquired through horizontal gene transfer from a Candida yeast. In contrast, the GAL cluster of Cryptococcus yeasts was assembled independently from the Saccharomyces/Candida and Schizosaccharomyces GAL clusters and coexists in the Cryptococcus genome with unclustered GAL paralogs. These independently evolved GAL clusters represent a striking example of analogy at the genomic level. We also found that species with GAL clusters exhibited significantly higher rates of GAL pathway loss than species with unclustered GAL genes. These results suggest that clustering of metabolic genes might facilitate fungal adaptation to changing environments both through the acquisition and loss of metabolic capacities.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Antibody-mediated accommodation of heart grafts expressing an incompatible carbohydrate antigen.
Mohiuddin MM, Ogawa H, Yin DP, Shen J, Galili U
(2003) Transplantation 75: 258-62
MeSH Terms: Adoptive Transfer, Animals, B-Lymphocytes, Carbohydrate Sequence, Epitopes, Female, Galactose, Galactosyltransferases, Graft Rejection, Heart Transplantation, Immunoglobulin G, Immunologic Memory, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Molecular Sequence Data, Multiple Myeloma, Tumor Cells, Cultured
Show Abstract · Added December 10, 2013
BACKGROUND - Accommodation in patients transplanted with ABO incompatible allografts describes a state in which antibodies are produced against the incompatible blood group carbohydrate antigen; however, the graft is not rejected. The present study describes an experimental model for antibody-mediated accommodation of organs expressing incompatible carbohydrate antigens.
METHODS - The model includes alpha1,3galactosyltransferase knockout mice that lack the alpha-gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R), transplanted heterotopically with wild-type (WT) hearts expressing this epitope. The mice are irradiated and receive memory anti-Gal B cells by adoptive transfer. Immunization of these mice with pig-kidney membranes induces the production of large amounts of anti-Gal, which binds specifically to alpha-gal epitopes.
RESULTS - Under the described accommodation protocol, transplanted mice produce anti-Gal that binds to alpha-gal epitopes on endothelial cells of the grafted WT heart; however, the WT hearts continued to function for months. Second WT hearts transplanted into accommodating, anti-Gal producing mice, were not rejected. Anti-Gal in accommodating mice was not cytolytic, whereas anti-Gal in rejecting mice readily induced complement-mediated lysis of cells expressing alpha-gal epitopes. In addition, accommodating mice displayed a preferential increase in the anti-Gal immunoglobulin (Ig)G2b subclass.
CONCLUSIONS - The immune system may be manipulated to accommodate grafts expressing incompatible carbohydrate antigens by preferential production of noncytolytic anticarbohydrate antibodies.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level.
Hasty AH, Shimano H, Yahagi N, Amemiya-Kudo M, Perrey S, Yoshikawa T, Osuga J, Okazaki H, Tamura Y, Iizuka Y, Shionoiri F, Ohashi K, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N
(2000) J Biol Chem 275: 31069-77
MeSH Terms: Animals, Antimetabolites, Antineoplastic, Azaserine, Blotting, Northern, CCAAT-Enhancer-Binding Proteins, Cell Differentiation, Cell Line, Cell Membrane, Cell Nucleus, Chromones, Colforsin, DNA-Binding Proteins, Dose-Response Relationship, Drug, Enzyme Inhibitors, Fatty Acid Synthases, Fructose, Fructosephosphates, Galactose, Genes, Reporter, Glucose, Immunoblotting, Liver, Mice, Morpholines, Phosphatidylinositol 3-Kinases, Protein Isoforms, RNA, Messenger, Ribonucleases, Sterol Regulatory Element Binding Protein 1, Sterol Regulatory Element Binding Protein 2, Temperature, Time Factors, Transcription Factors, Transcription, Genetic, Transfection, Up-Regulation, Xylose
Show Abstract · Added March 27, 2013
In vivo studies suggest that sterol regulatory element-binding protein (SREBP)-1 plays a key role in the up-regulation of lipogenic genes in the livers of animals that have consumed excess amounts of carbohydrates. In light of this, we sought to use an established mouse hepatocyte cell line, H2-35, to further define the mechanism by which glucose regulates nuclear SREBP-1 levels. First, we show that these cells transcribe high levels of SREBP-1c that are increased 4-fold upon differentiation from a prehepatocyte to a hepatocyte phenotype, making them an ideal cell culture model for the study of SREBP-1c induction. Second, we demonstrate that the presence of precursor and mature forms of SREBP-1 protein are positively regulated by medium glucose concentrations ranging from 5. 5 to 25 mm and are also regulated by insulin, with the amount of insulin in the fetal bovine serum being sufficient for maximal stimulation of SREBP-1 expression. Third, we show that the increase in SREBP-1 protein is due to an increase in SREBP-1 mRNA. Reporter gene analysis of the SREBP-1c promoter demonstrated a glucose-dependent induction of transcription. In contrast, expression of a fixed amount of the precursor form of SREBP-1c protein showed that glucose does not influence its cleavage. Fourth, we demonstrate that the glucose induction of SREBP could not be reproduced by fructose, xylose, or galactose nor by glucose analogs 2-deoxy glucose and 3-O-methyl glucopyranose. These data provide strong evidence for the induction of SREBP-1c mRNA by glucose leading to increased mature protein in the nucleus, thus providing a potential mechanism for the up-regulation of lipogenic genes by glucose in vivo.
0 Communities
1 Members
0 Resources
37 MeSH Terms
The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor.
Iovine MK, Watkins JL, Wente SR
(1995) J Cell Biol 131: 1699-713
MeSH Terms: Amino Acid Sequence, Base Sequence, Biological Transport, Cell Division, Cell Nucleus, Cell Survival, Fungal Proteins, Galactose, Gene Deletion, Gene Expression, Membrane Proteins, Microscopy, Electron, Molecular Sequence Data, Nuclear Pore Complex Proteins, Nuclear Proteins, Phenotype, RNA, Messenger, Raffinose, Repetitive Sequences, Nucleic Acid, Saccharomyces cerevisiae Proteins, Yeasts
Show Abstract · Added March 21, 2014
Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.
0 Communities
1 Members
0 Resources
21 MeSH Terms