Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 2 of 2

Publication Record

Connections

Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models.
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K
(2016) Hum Mol Genet 25: 3699-3714
MeSH Terms: Animals, Disease Models, Animal, Drosophila, Drosophila Proteins, Galactokinase, Galactosemias, Glycosylation, Humans, Neuromuscular Junction, Synapses, UTP-Hexose-1-Phosphate Uridylyltransferase, Wnt Signaling Pathway
Show Abstract · Added March 29, 2017
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Gal4 turnover and transcription activation.
Collins GA, Lipford JR, Deshaies RJ, Tansey WP
(2009) Nature 461: E7; discussion E8
MeSH Terms: Binding, Competitive, Chromatin Immunoprecipitation, DNA-Binding Proteins, Estradiol, Galactokinase, Promoter Regions, Genetic, Protein Binding, Receptors, Estrogen, Reproducibility of Results, Research Design, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Tamoxifen, Trans-Activators, Transcription Factors, Transcription, Genetic, Transcriptional Activation
Show Abstract · Added March 10, 2014
Growing evidence supports the notion that proteasome-mediated destruction of transcriptional activators can be intimately coupled to their function. Recently, Nalley et al. challenged this view by reporting that the prototypical yeast activator Gal4 does not dynamically associate with chromatin, but rather 'locks in' to stable promoter complexes that are resistant to competition. Here we present evidence that the assay used to reach this conclusion is unsuitable, and that promoter-bound, active Gal4 is indeed susceptible to competition in vivo. Our data challenge the key evidence that Nalley et al. used to reach their conclusion, and indicate that Gal4 functions in vivo within the context of dynamic promoter complexes.
0 Communities
1 Members
0 Resources
17 MeSH Terms