Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 12

Publication Record

Connections

GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions.
Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, Taylor SR, Duman CH, Delpire E, Picciotto M, Wohleb ES, Duman RS
(2020) J Clin Invest 130: 1336-1349
MeSH Terms: Animals, Antidepressive Agents, Female, GABAergic Neurons, Gene Knockout Techniques, Glutamate Decarboxylase, Interneurons, Ketamine, Male, Mice, Mice, Transgenic, Parvalbumins, Receptors, N-Methyl-D-Aspartate, Sex Characteristics, Somatostatin
Show Abstract · Added March 18, 2020
A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.
0 Communities
1 Members
0 Resources
15 MeSH Terms
A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry.
Zhang J, Weinrich JAP, Russ JB, Comer JD, Bommareddy PK, DiCasoli RJ, Wright CVE, Li Y, van Roessel PJ, Kaltschmidt JA
(2017) Cell Rep 21: 666-678
MeSH Terms: Animals, Biomarkers, Dystonia, GABAergic Neurons, Genetic Predisposition to Disease, Interneurons, Male, Mice, Mutant Strains, Molecular Chaperones, Mutation, Nerve Net, Presynaptic Terminals, Proprioception, Spinal Cord, Transcription Factors
Show Abstract · Added November 7, 2017
Spinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre circuit components are altered in these conditions. Here, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia-related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted, formation of GABApre sensory afferent synapses is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
15 MeSH Terms
The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons.
Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM
(2016) Elife 5:
MeSH Terms: Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, GABAergic Neurons, Gene Expression Regulation, Ion Channels, Neuronal Plasticity
Show Abstract · Added March 26, 2019
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons.
0 Communities
1 Members
0 Resources
MeSH Terms
Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.
Doll CA, Broadie K
(2016) Neurobiol Dis 89: 76-87
MeSH Terms: Animals, Animals, Genetically Modified, Calcium Signaling, Cholinergic Neurons, Critical Period, Psychological, Disease Models, Animal, Drosophila Proteins, Drosophila melanogaster, Fragile X Mental Retardation Protein, GABAergic Neurons, Gene Knockout Techniques, Learning, Memory, Mushroom Bodies, Neurons
Show Abstract · Added March 29, 2017
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period.
Copyright © 2016 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem.
Lee H, Bach E, Noh J, Delpire E, Kandler K
(2016) J Neurophysiol 115: 1170-82
MeSH Terms: Animals, GABAergic Neurons, Glycine, Membrane Potentials, Mice, Neurogenesis, Superior Olivary Complex, Symporters, Synapses, gamma-Aminobutyric Acid
Show Abstract · Added May 3, 2017
During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Transcriptional Control of Synaptic Remodeling through Regulated Expression of an Immunoglobulin Superfamily Protein.
He S, Philbrook A, McWhirter R, Gabel CV, Taub DG, Carter MH, Hanna IM, Francis MM, Miller DM
(2015) Curr Biol 25: 2541-8
MeSH Terms: Acetylcholine, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, GABAergic Neurons, Gene Expression Regulation, Immunoglobulins, Motor Neurons, Nerve Tissue Proteins, Receptors, Cholinergic, Synapses, Transcription Factors
Show Abstract · Added March 26, 2019
Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in C. elegans that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and postsynaptic components. In newly born larvae, DDs receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.
Melchior JR, Ferris MJ, Stuber GD, Riddle DR, Jones SR
(2015) J Neurochem 134: 833-44
MeSH Terms: Acetylcholine, Animals, Artifacts, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Channelrhodopsins, Cholinergic Neurons, Dopamine, Dopaminergic Neurons, Electric Stimulation, GABA-B Receptor Antagonists, GABAergic Neurons, Gene Knock-In Techniques, Interneurons, Male, Mice, Mice, Inbred C57BL, Microelectrodes, Nerve Tissue Proteins, Nucleus Accumbens, Optogenetics, Phosphinic Acids, Presynaptic Terminals, Promoter Regions, Genetic, Propanolamines, Synapses, Tyrosine 3-Monooxygenase, Ventral Tegmental Area, gamma-Aminobutyric Acid
Show Abstract · Added March 30, 2020
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation.
© 2015 International Society for Neurochemistry.
0 Communities
1 Members
0 Resources
MeSH Terms
Long-range GABAergic neurons in the prefrontal cortex modulate behavior.
Bravo-Rivera C, Diehl MM, Roman-Ortiz C, Rodriguez-Romaguera J, Rosas-Vidal LE, Bravo-Rivera H, Quiñones-Laracuente K, Do-Monte FH
(2015) J Neurophysiol 114: 1357-9
MeSH Terms: Animals, Avoidance Learning, Female, GABAergic Neurons, Male, Neural Pathways, Nucleus Accumbens, Prefrontal Cortex
Show Abstract · Added March 3, 2020
Cortical glutamatergic projections are extensively studied in behavioral neuroscience, whereas cortical GABAergic projections to downstream structures have been overlooked. A recent study by Lee and colleagues (Lee AT, Vogt D, Rubenstein JL, Sohal VS. J Neurosci 34: 11519-11525, 2014) used optogenetic and electrophysiological techniques to characterize a behavioral role for long-projecting GABAergic neurons in the medial prefrontal cortex. In this Neuro Forum, we discuss the potential implications of this study in several learning and memory models.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
MeSH Terms
Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.
Graham DL, Durai HH, Garden JD, Cohen EL, Echevarria FD, Stanwood GD
(2015) ACS Chem Neurosci 6: 297-305
MeSH Terms: Animals, Cell Count, Depression, Emotions, Female, GABAergic Neurons, Glutamate Decarboxylase, Green Fluorescent Proteins, Gyrus Cinguli, Immunohistochemistry, In Situ Hybridization, Fluorescence, Interneurons, Male, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Neuropsychological Tests, Parvalbumins, Receptors, Dopamine D2
Show Abstract · Added January 20, 2015
Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Ablation of TrkB signalling in CCK neurons results in hypercortisolism and obesity.
Geibel M, Badurek S, Horn JM, Vatanashevanopakorn C, Koudelka J, Wunderlich CM, Brönneke HS, Wunderlich FT, Minichiello L
(2014) Nat Commun 5: 3427
MeSH Terms: Animals, Body Composition, Calorimetry, Indirect, Cholecystokinin, Cushing Syndrome, Eating, Female, GABAergic Neurons, Immunoblotting, In Situ Hybridization, Male, Membrane Glycoproteins, Mice, Mifepristone, Obesity, Protein-Tyrosine Kinases
Show Abstract · Added July 21, 2014
Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity leads to debilitating neuroendocrine or metabolic disorders such as Cushing's syndrome (CS). Glucocorticoids control HPA axis activity through negative feedback to the pituitary gland and the central nervous system (CNS). However, the cellular mechanisms involved are poorly understood, particularly in the CNS. Here we show that, in mice, selective loss of TrkB signalling in cholecystokinin (CCK)-GABAergic neurons induces glucocorticoid resistance, resulting in increased corticotrophin-releasing hormone expression, chronic hypercortisolism, adrenocortical hyperplasia, glucose intolerance and mature-onset obesity, reminiscent of the human CS phenotype. Interestingly, obesity is not due to hyperphagia or decreased energy expenditure, but is associated with increased de novo lipogenesis in the liver. Our study therefore identifies CCK neurons as a novel and critical cellular component of the HPA axis, and demonstrates the requirement of TrkB for the transmission of glucocorticoid signalling.
1 Communities
0 Members
0 Resources
16 MeSH Terms