Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 135

Publication Record

Connections

Temporo-frontal activation during phonological processing predicts gains in arithmetic facts in young children.
Suárez-Pellicioni M, Fuchs L, Booth JR
(2019) Dev Cogn Neurosci 40: 100735
MeSH Terms: Adolescent, Brain, Brain Mapping, Child, Female, Frontal Lobe, Humans, Male, Mathematics, Phonetics, Temporal Lobe
Show Abstract · Added March 3, 2020
Behavioral studies have shown discrepant results regarding the role of phonology in predicting math gains. The objective of this study was to use fMRI to study the role of activation during a rhyming judgment task in predicting behavioral gains on math fluency, multiplication, and subtraction skill. We focused within the left middle/superior temporal gyrus and left inferior frontal gyrus, brain areas associated with the storage of phonological representations and with their access, respectively. We ran multiple regression analyses to determine whether activation predicted gains in the three math measures, separately for younger (i.e. 10 years old) and older (i.e 12 years old) children. Results showed that activation in both temporal and frontal cortex only predicted gains in fluency and multiplication skill, and only for younger children. This study suggests that both temporal and frontal cortex activation during phonological processing are important in predicting gains in math tasks that involve the retrieval of facts that are stored as phonological codes in memory. Moreover, these results were specific to younger children, suggesting that phonology is most important in the early stages of math development. When the math task involved subtractions, which relies on quantity representations, phonological processes were not important in driving gains.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty.
Kircanski K, Sisk LM, Ho TC, Humphreys KL, King LS, Colich NL, Ordaz SJ, Gotlib IH
(2019) Dev Psychopathol 31: 1011-1022
MeSH Terms: Adolescent, Depression, Emotions, Female, Frontal Lobe, Humans, Hydrocortisone, Hypothalamo-Hypophyseal System, Limbic System, Male, Nerve Net, Pituitary-Adrenal System, Puberty, Saliva, Stress, Psychological, White Matter
Show Abstract · Added March 3, 2020
Early life stress (ELS) is a risk factor for the development of depression in adolescence; the mediating neurobiological mechanisms, however, are unknown. In this study, we examined in early pubertal youth the associations among ELS, cortisol stress responsivity, and white matter microstructure of the uncinate fasciculus and the fornix, two key frontolimbic tracts; we also tested whether and how these variables predicted depressive symptoms in later puberty. A total of 208 participants (117 females; M age = 11.37 years; M Tanner stage = 2.03) provided data across two or more assessment modalities: ELS; salivary cortisol levels during a psychosocial stress task; diffusion magnetic resonance imaging; and depressive symptoms. In early puberty there were significant associations between higher ELS and decreased cortisol production, and between decreased cortisol production and increased fractional anisotropy in the uncinate fasciculus. Further, increased fractional anisotropy in the uncinate fasciculus predicted higher depressive symptoms in later puberty, above and beyond earlier symptoms. In post hoc analyses, we found that sex moderated several additional associations. We discuss these findings within a broader conceptual model linking ELS, emotion dysregulation, and depression across the transition through puberty, and contend that brain circuits implicated in the control of hypothalamic-pituitary-adrenal axis function should be a focus of continued research.
0 Communities
1 Members
0 Resources
MeSH Terms
Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson's disease.
Trujillo P, van Wouwe NC, Lin YC, Stark AJ, Petersen KJ, Kang H, Zald DH, Donahue MJ, Claassen DO
(2019) Cortex 115: 99-111
MeSH Terms: Aged, Cerebrovascular Circulation, Dopamine Agonists, Female, Frontal Lobe, Humans, Inhibition, Psychological, Magnetic Resonance Imaging, Male, Middle Aged, Neuropsychological Tests, Parkinson Disease, Psychomotor Performance, Reaction Time
Show Abstract · Added April 15, 2019
Parkinson's disease (PD) is characterized by dysfunction in frontal cortical and striatal networks that regulate action control. We investigated the pharmacological effect of dopamine agonist replacement therapy on frontal cortical activity and motor inhibition. Using Arterial Spin Labeling MRI, we examined 26 PD patients in the off- and on-dopamine agonist medication states to assess the effect of dopamine agonists on frontal cortical regional cerebral blood flow. Motor inhibition was measured by the Simon task in both medication states. We applied the dual process activation suppression model to dissociate fast response impulses from motor inhibition of incorrect responses. General linear regression model analyses determined the medication effect on regional cerebral blood flow and motor inhibition, and the relationship between regional cerebral blood flow and motor inhibitory proficiency. We show that dopamine agonist administration increases frontal cerebral blood flow, particularly in the pre-supplementary motor area (pre-SMA) and the dorsolateral prefrontal cortex (DLPFC). Higher regional blood flow in the pre-SMA, DLPFC and motor cortex was associated with better inhibitory control, suggesting that treatments which improve frontal cortical activity could ameliorate motor inhibition deficiency in PD patients.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Adaptive paradigms for mapping phonological regions in individual participants.
Yen M, DeMarco AT, Wilson SM
(2019) Neuroimage 189: 368-379
MeSH Terms: Adult, Aged, Brain Mapping, Female, Frontal Lobe, Functional Laterality, Humans, Language, Magnetic Resonance Imaging, Male, Middle Aged, Parietal Lobe, Psycholinguistics, Reading, Reproducibility of Results, Young Adult
Show Abstract · Added March 26, 2019
Phonological encoding depends on left-lateralized regions in the supramarginal gyrus and the ventral precentral gyrus. Localization of these phonological regions in individual participants-including individuals with language impairments-is important in several research and clinical contexts. To localize these regions, we developed two paradigms that load on phonological encoding: a rhyme judgment task and a syllable counting task. Both paradigms relied on an adaptive staircase design to ensure that each individual performed each task at a similarly challenging level. The goal of this study was to assess the validity and reliability of the two paradigms, in terms of their ability to consistently produce left-lateralized activations of the supramarginal gyrus and ventral precentral gyrus in neurologically normal individuals with presumptively normal language localization. Sixteen participants were scanned with fMRI as they performed the rhyme judgment paradigm, the syllable counting paradigm, and an adaptive semantic paradigm that we have described previously. We found that the rhyme and syllable paradigms both yielded left-lateralized supramarginal and ventral precentral activations in the majority of participants. The rhyme paradigm produced more lateralized and more reliable activations, and so should be favored in future applications. In contrast, the semantic paradigm did not reveal supramarginal or precentral activations in most participants, suggesting that the recruitment of these regions is indeed driven by phonological encoding, not language processing in general. In sum, the adaptive rhyme judgment paradigm was effective in localizing left-lateralized phonological encoding regions in individual participants, and, in conjunction with the adaptive semantic paradigm, can be used to map individual language networks.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Neural correlates of resolving conflict from emotional and nonemotional distracters in obsessive-compulsive disorder.
Theiss JD, McHugo M, Zhao M, Zald DH, Olatunji BO
(2019) Psychiatry Res Neuroimaging 284: 29-36
MeSH Terms: Adult, Brain, Case-Control Studies, Emotions, Female, Frontal Lobe, Gyrus Cinguli, Humans, Magnetic Resonance Imaging, Male, Negotiating, Obsessive-Compulsive Disorder, Prefrontal Cortex
Show Abstract · Added April 15, 2019
Obsessive compulsive disorder (OCD) is associated with altered processing in brain regions involved in conflict resolution. However, limited research has examined the extent to which conflict from emotional distracters characterizes OCD such that responsiveness to task-irrelevant emotional stimuli is altered compared to controls. In the present study, 16 patients with OCD and 15 healthy controls underwent functional magnetic resonance imaging (fMRI) during resolution of conflict from emotional or nonemotional distracters. Results in healthy controls demonstrated that rostral anterior cingulate cortex (rACC), middle frontal gyrus (MFG), and medial superior frontal gyrus (MSFG) showed greater activation for high conflict versus low conflict. Responses in these regions differed between the emotional and nonemotional distracter tasks, with rACC and MSFG having greater activation for conflict from nonemotional distracters and anterior MFG showing greater activation for conflict from emotional distracters. Furthermore, between-group differences revealed a region in right posterior MFG in which controls similarly exhibited greater activation during high conflict versus low conflict with emotional distracters; however, OCD patients showed the opposite pattern with greater activation during low conflict compared to high conflict. These findings suggest that activity of right posterior MFG may be relevant in better understanding inefficient responding during emotional conflict in OCD.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Functional Categories of Visuomotor Neurons in Macaque Frontal Eye Field.
Lowe KA, Schall JD
(2018) eNeuro 5:
MeSH Terms: Action Potentials, Animals, Attention, Eye Movements, Frontal Lobe, Macaca radiata, Male, Neurons, Reaction Time, Visual Fields, Visual Pathways
Show Abstract · Added March 18, 2020
Frontal eye field (FEF) in macaque monkeys contributes to visual attention, visual-motor transformations and production of eye movements. Traditionally, neurons in FEF have been classified by the magnitude of increased discharge rates following visual stimulus presentation, during a waiting period, and associated with eye movement production. However, considerable heterogeneity remains within the traditional visual, visuomovement, and movement categories. Cluster analysis is a data-driven method of identifying self-segregating groups within a dataset. Because many cluster analysis techniques exist and outcomes vary with analysis assumptions, consensus clustering aggregates over multiple analyses, identifying robust groups. To describe more comprehensively the neuronal composition of FEF, we applied a consensus clustering technique for unsupervised categorization of patterns of spike rate modulation measured during a memory-guided saccade task. We report 10 functional categories, expanding on the traditional 3 categories. Categories were distinguished by latency, magnitude, and sign of visual response; the presence of sustained activity; and the dynamics, magnitude and sign of saccade-related modulation. Consensus clustering can include other metrics and can be applied to datasets from other brain regions to provide better information guiding microcircuit models of cortical function.
0 Communities
1 Members
0 Resources
MeSH Terms
Impact of substance use disorder on gray matter volume in schizophrenia.
Quinn M, McHugo M, Armstrong K, Woodward N, Blackford J, Heckers S
(2018) Psychiatry Res Neuroimaging 280: 9-14
MeSH Terms: Adolescent, Adult, Amygdala, Cerebral Cortex, Diagnosis, Dual (Psychiatry), Female, Frontal Lobe, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Occipital Lobe, Organ Size, Schizophrenia, Schizophrenic Psychology, Substance-Related Disorders, Young Adult
Show Abstract · Added March 26, 2019
Substance use may confound the study of brain structure in schizophrenia. We used voxel-based morphometry (VBM) to examine whether differences in regional gray matter volumes exist between schizophrenia patients with (n = 92) and without (n = 66) clinically significant cannabis and/or alcohol use histories compared to 88 healthy control subjects. Relative to controls, patients with schizophrenia had reduced gray matter volume in the bilateral precentral gyrus, right medial frontal cortex, right visual cortex, right occipital pole, right thalamus, bilateral amygdala, and bilateral cerebellum regardless of substance use history. Within these regions, we found no volume differences between patients with schizophrenia and a history of cannabis and/or alcohol compared to patients with schizophrenia without a clinically significant substance use history. Our data support the idea that a clinically meaningful history of alcohol or cannabis use does not significantly compound the gray matter deficits associated with schizophrenia.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence.
Ho TC, King LS, Leong JK, Colich NL, Humphreys KL, Ordaz SJ, Gotlib IH
(2017) Soc Cogn Affect Neurosci 12: 1460-1469
MeSH Terms: Adolescent, Anisotropy, Anxiety, Brain Mapping, Child, Diffusion Tensor Imaging, Female, Frontal Lobe, Humans, Limbic System, Magnetic Resonance Imaging, Male, Nerve Fibers, Neural Pathways, Neuropsychological Tests, Stress, Psychological, White Matter
Show Abstract · Added March 3, 2020
Previous research suggests that exposure to early life stress (ELS) affects the structural integrity of the uncinate fasciculus (UF), a frontolimbic white matter tract that undergoes protracted development throughout adolescence. Adolescence is an important transitional period characterized by the emergence of internalizing psychopathology such as anxiety, particularly in individuals with high levels of stress sensitivity. We examined the relations among sensitivity to ELS, structural integrity of the UF, and anxiety symptoms in 104 early adolescents. We conducted structured interviews to assess exposure to ELS and obtained subjective and objective ratings of stress severity, from which we derived an index of ELS sensitivity. We also acquired diffusion MRI and conducted deterministic tractography to visualize UF trajectories and to compute measures of structural integrity from three distinct segments of the UF: frontal, insular, temporal. We found that higher sensitivity to ELS predicted both reduced fractional anisotropy in right frontal UF and higher levels of anxiety symptoms. These findings suggest that fibers in frontal UF, which are still developing throughout adolescence, are most vulnerable to the effects of heightened sensitivity to ELS, and that reduced structural integrity of frontal UF may underlie the relation between early stress and subsequent internalizing psychopathology.
© The Author (2017). Published by Oxford University Press.
0 Communities
1 Members
0 Resources
MeSH Terms
Frontocingulate cerebral blood flow and cerebrovascular reactivity associated with antidepressant response in late-life depression.
Abi Zeid Daou M, Boyd BD, Donahue MJ, Albert K, Taylor WD
(2017) J Affect Disord 215: 103-110
MeSH Terms: Adult, Aged, Aging, Antidepressive Agents, Depression, Female, Frontal Lobe, Gyrus Cinguli, Hemodynamics, Humans, Late Onset Disorders, Magnetic Resonance Imaging, Male, Middle Aged, Neuroimaging, Sertraline, Spin Labels, Treatment Outcome
Show Abstract · Added April 6, 2017
BACKGROUND - Vascular pathology is common in late-life depression (LLD) and may contribute to alterations in cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). In turn, such hemodynamic deficits may adversely affect brain function and clinical course. The goal of this study was to examine whether altered cerebral hemodynamics in depressed elders predicted antidepressant response.
METHODS - 21 depressed elders completed cranial 3T MRI, including a pseudo-continuous Arterial Spin Labeling (pcASL) acquisition on both room air and during a hypercapnia challenge. Participants then completed 12 weeks of open-label sertraline. Statistical analyses examined the relationship between regional normalized CBF and CVR values and change in Montgomery-Asberg Depression Rating Scale (MADRS) and tested for differences based on remission status.
RESULTS - 10 participants remitted and 11 did not. After controlling for age and baseline MADRS, greater change in MADRS with treatment was associated with lower pre-treatment normalized CBF in the caudal anterior cingulate cortex (cACC) and lateral orbitofrontal cortex (OFC), as well as lower CVR with hypercapnia in the caudal medial frontal gyrus (cMFG). After controlling for age and baseline MADRS score, remitters exhibited lower CBF in the cACC and lower CVR in the cMFG.
LIMITATIONS - Our sample was small, did not include a placebo arm, and we examined only specific regions of interest.
CONCLUSIONS - Our findings suggest that increased perfusion of the OFC and the ACC is associated with a poor antidepressant response. They do not support that vascular pathology as measured by CBF and CVR negatively affects acute treatment outcomes.
Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Neural control of visual search by frontal eye field: chronometry of neural events and race model processes.
Nelson MJ, Murthy A, Schall JD
(2016) J Neurophysiol 115: 1954-69
MeSH Terms: Animals, Evoked Potentials, Visual, Frontal Lobe, Macaca mulatta, Macaca radiata, Neurons, Reaction Time, Saccades, Visual Fields
Show Abstract · Added May 9, 2017
We investigated the chronometry of neural processes in frontal eye fields of macaques performing double-step saccade visual search in which a conspicuous target changes location in the array on a random fraction of trials. Durations of computational processes producing a saccade to original and final target locations (GO1 and GO2, respectively) are derived from response times (RT) on different types of trials. In these data, GO2 tended to be faster than GO1, demonstrating that inhibition of the initial saccade did not delay production of the compensated saccade. Here, we measured the dynamics of visual, visuomovement, and movement neuron activity in relation to these processes by examining trials when neurons instantiated either process. First, we verified that saccades were initiated when the discharge rate of movement neurons reached a threshold that was invariant across RT and trial type. Second, the time when visual and visuomovement neurons selected the target and when movement neuron activity began to accumulate were not significantly different across trial type. Third, the interval from the beginning of accumulation to threshold of movement-related activity was significantly shorter when instantiating the GO2 relative to the GO1 process. Differences observed between monkeys are discussed. Fourth, random variation of RT was accounted for to some extent by random variation in both the onset and duration of selective activity of each neuron type but mostly by variation of movement neuron accumulation duration. These findings offer new insights into the sources of control of target selection and saccade production in dynamic environments.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
9 MeSH Terms