Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 618

Publication Record

Connections

Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health.
Tong X, Dai C, Walker JT, Nair GG, Kennedy A, Carr RM, Hebrok M, Powers AC, Stein R
(2020) Diabetes 69: 342-354
MeSH Terms: Acinar Cells, Adolescent, Adult, Age Factors, Aged, Animals, Child, Child, Preschool, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 2, Embryonic Stem Cells, Female, Glucagon-Secreting Cells, Humans, Infant, Insulin-Secreting Cells, Islets of Langerhans, Islets of Langerhans Transplantation, Lipid Droplets, Male, Mice, Microscopy, Electron, Microscopy, Fluorescence, Middle Aged, Rats, Tissue Donors, Young Adult
Show Abstract · Added March 29, 2020
Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet β-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and β-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet β-like cells produced from human embryonic cell-derived β-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.
© 2019 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2019 Conference Workshops.
Czechowska K, Lannigan J, Aghaeepour N, Back JB, Begum J, Behbehani G, Bispo C, Bitoun D, Fernández AB, Boova ST, Brinkman RR, Ciccolella CO, Cotleur B, Davies D, Dela Cruz GV, Del Rio-Guerra R, Des Lauriers-Cox AM, Douagi I, Dumrese C, Bonilla Escobar DL, Estevam J, Ewald C, Fossum A, Gaudillière B, Green C, Groves C, Hall C, Haque Y, Hedrick MN, Hogg K, Hsieh EWY, Irish J, Lederer J, Leipold M, Lewis-Tuffin LJ, Litwin V, Lopez P, Nasdala I, Nedbal J, Ohlsson-Wilhelm BM, Price KM, Rahman AH, Rayanki R, Rieger AM, Robinson JP, Shapiro H, Sun YS, Tang VA, Tesfa L, Telford WG, Walker R, Welsh JA, Wheeler P, Tárnok A
(2019) Cytometry A 95: 1236-1274
MeSH Terms: Animals, Clinical Trials as Topic, Flow Cytometry, Fluorescence, Guidelines as Topic, Humans, Inventions, Reproducibility of Results, Stem Cells, Surveys and Questionnaires
Added June 8, 2020
3 Communities
1 Members
0 Resources
10 MeSH Terms
Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress.
Byrd KM, Piehl NC, Patel JH, Huh WJ, Sequeira I, Lough KJ, Wagner BL, Marangoni P, Watt FM, Klein OD, Coffey RJ, Williams SE
(2019) Cell Stem Cell 25: 814-829.e6
MeSH Terms: Animals, Cell Division, Cell Lineage, Cells, Cultured, Female, Flow Cytometry, Fluorescence, Immunohistochemistry, Male, Membrane Glycoproteins, Mice, Mouth Mucosa, Nerve Tissue Proteins, Stem Cells, Wound Healing
Show Abstract · Added March 3, 2020
Stem cells in stratified epithelia are generally believed to adhere to a non-hierarchical single-progenitor model. Using lineage tracing and genetic label-retention assays, we show that the hard palatal epithelium of the oral cavity is unique in displaying marked proliferative heterogeneity. We identify a previously uncharacterized, infrequently-dividing stem cell population that resides within a candidate niche, the junctional zone (JZ). JZ stem cells tend to self-renew by planar symmetric divisions, respond to masticatory stresses, and promote wound healing, whereas frequently-dividing cells reside outside the JZ, preferentially renew through perpendicular asymmetric divisions, and are less responsive to injury. LRIG1 is enriched in the infrequently-dividing population in homeostasis, dynamically changes expression in response to tissue stresses, and promotes quiescence, whereas Igfbp5 preferentially labels a rapidly-growing, differentiation-prone population. These studies establish the oral mucosa as an important model system to study epithelial stem cell populations and how they respond to tissue stresses.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices.
Thal LB, Mann VR, Sprinzen D, McBride JR, Reid KR, Tomlinson ID, McMahon DG, Cohen BE, Rosenthal SJ
(2020) Biomater Sci 8: 837-845
MeSH Terms: Animals, Brain, Brain Chemistry, Ligands, Mice, Microscopy, Fluorescence, Microtomy, Proteins, Quantum Dots, Selenium Compounds, Staining and Labeling, Zinc Compounds
Show Abstract · Added March 18, 2020
Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes.
Cadar AG, Feaster TK, Bersell KR, Wang L, Hong T, Balsamo JA, Zhang Z, Chun YW, Nam YJ, Gotthardt M, Knollmann BC, Roden DM, Lim CC, Hong CC
(2020) Am J Physiol Cell Physiol 318: C163-C173
MeSH Terms: Adult, Cell Differentiation, Cell Line, Connectin, Fluorescence Recovery After Photobleaching, Humans, Induced Pluripotent Stem Cells, Kinetics, Luminescent Proteins, Male, Microscopy, Fluorescence, Microscopy, Video, Myocytes, Cardiac, Recombinant Fusion Proteins, Reproducibility of Results, Sarcomeres
Show Abstract · Added March 24, 2020
Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.
0 Communities
1 Members
0 Resources
16 MeSH Terms
neurons have functional dendritic spines.
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM
(2019) Elife 8:
MeSH Terms: Animals, Caenorhabditis elegans, Dendritic Spines, Intravital Microscopy, Microscopy, Electron, Microscopy, Fluorescence, Motor Neurons, Organelles
Show Abstract · Added March 3, 2020
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
© 2019, Cuentas-Condori et al.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Generating kinetic environments to study dynamic cellular processes in single cells.
Thiemicke A, Jashnsaz H, Li G, Neuert G
(2019) Sci Rep 9: 10129
MeSH Terms: Algorithms, Cell Line, Cell Shape, Equipment Design, Gene Expression Regulation, Humans, In Situ Hybridization, Fluorescence, Interrupted Time Series Analysis, Kinetics, Membrane Transport Proteins, Mitogen-Activated Protein Kinases, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Signal Transduction, Single Molecule Imaging, Single-Cell Analysis, Time-Lapse Imaging
Show Abstract · Added February 5, 2020
Cells of any organism are consistently exposed to changes over time in their environment. The kinetics by which these changes occur are critical for the cellular response and fate decision. It is therefore important to control the temporal changes of extracellular stimuli precisely to understand biological mechanisms in a quantitative manner. Most current cell culture and biochemical studies focus on instant changes in the environment and therefore neglect the importance of kinetic environments. To address these shortcomings, we developed two experimental methodologies to precisely control the environment of single cells. These methodologies are compatible with standard biochemistry, molecular, cell and quantitative biology assays. We demonstrate applicability by obtaining time series and time point measurements in both live and fixed cells. We demonstrate the feasibility of the methodology in yeast and mammalian cell culture in combination with widely used assays such as flow cytometry, time-lapse microscopy and single-molecule RNA Fluorescent in-situ Hybridization (smFISH). Our experimental methodologies are easy to implement in most laboratory settings and allows the study of kinetic environments in a wide range of assays and different cell culture conditions.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells.
Li G, Neuert G
(2019) Sci Data 6: 94
MeSH Terms: In Situ Hybridization, Fluorescence, Membrane Transport Proteins, RNA, Fungal, RNA, Messenger, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Single-Cell Analysis
Show Abstract · Added February 5, 2020
Transcript levels powerfully influence cell behavior and phenotype and are carefully regulated at several steps. Recently developed single cell approaches such as RNA single molecule fluorescence in-situ hybridization (smFISH) have produced advances in our understanding of how these steps work within the cell. In comparison to single-cell sequencing, smFISH provides more accurate quantification of RNA levels. Additionally, transcript subcellular localization is directly visualized, enabling the analysis of transcription (initiation and elongation), RNA export and degradation. As part of our efforts to investigate how this type of analysis can generate improved models of gene expression, we used smFISH to quantify the kinetic expression of STL1 and CTT1 mRNAs in single Saccharomyces cerevisiae cells upon 0.2 and 0.4 M NaCl osmotic stress. In this Data Descriptor, we outline our procedure along with our data in the form of raw images and processed mRNA counts. We discuss how these data can be used to develop single cell modelling approaches, to study fundamental processes in transcription regulation and develop single cell image processing approaches.
0 Communities
1 Members
0 Resources
MeSH Terms
MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies.
Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A, Perry WJ, Cassat JE, Skaar EP, Caprioli RM, Spraggins JM
(2019) Anal Chem 91: 7578-7585
MeSH Terms: Animals, Fluorescent Dyes, Kidney, Liquid-Liquid Extraction, Mice, Microscopy, Fluorescence, Peptides, Proteins, Proteomics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staphylococcus aureus, Trypsin
Show Abstract · Added January 22, 2020
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a liquid extraction surface analysis (LESA) workflow, termed microLESA, that allows proteomic profiling from discrete tissue features of ∼110 μm in diameter by integrating nondestructive autofluorescence microscopy and spatially targeted liquid droplet micro-digestion. Autofluorescence microscopy provides the visualization of tissue foci without the need for chemical stains or the use of serial tissue sections. Tryptic peptides are generated from tissue foci by applying small volume droplets (∼250 pL) of enzyme onto the surface prior to LESA. The microLESA workflow reduced the diameter of the sampled area almost 5-fold compared to previous LESA approaches. Experimental parameters, such as tissue thickness, trypsin concentration, and enzyme incubation duration, were tested to maximize proteomics analysis. The microLESA workflow was applied to the study of fluorescently labeled Staphylococcus aureus infected murine kidney to identify unique proteins related to host defense and bacterial pathogenesis. Proteins related to nutritional immunity and host immune response were identified by performing microLESA at the infectious foci and surrounding abscess. These identifications were then used to annotate specific proteins observed in infected kidney tissue by MALDI FT-ICR IMS through accurate mass matching.
0 Communities
3 Members
0 Resources
12 MeSH Terms
Analysis of Cardiac Chamber Development During Mouse Embryogenesis Using Whole Mount Epifluorescence.
Zhang Z, Nam YJ
(2019) J Vis Exp :
MeSH Terms: Animals, Embryo, Mammalian, Embryonic Development, Female, Fluorescence, Genotype, Heart, In Situ Hybridization, Male, Mice, Mice, Transgenic
Show Abstract · Added March 24, 2020
The goal of this protocol is to describe a method for the dissection of mouse embryos and visualization of embryonic mouse ventricular chambers during heart development using ventricular specific fluorescent reporter knock-in mice (MLC-2v-tdTomato mice). Heart development involves a linear heart tube formation, the heart tube looping, and four chamber septation. These complex processes are highly conserved in all vertebrates. The mouse embryonic heart has been widely used for heart developmental studies. However, due to their extremely small size, dissecting mouse embryonic hearts is technically challenging. In addition, visualization of cardiac chamber formation often needs in situ hybridization, beta-galactosidase staining using LacZ reporter mice, or immunostaining of sectioned embryonic hearts. Here, we describe how to dissect mouse embryonic hearts and directly visualize ventricular chamber formation of MLC-2v-tdTomato mice using whole mount epifluorescent microscopy. With this method, it is possible to directly examine heart tube formation and looping, and four chamber formation without further experimental manipulation of mouse embryos. Although the MLC-2v-tdTomato reporter knock-in mouse line is used in this protocol as an example, this protocol can be applied to other heart-specific fluorescent reporter transgenic mouse lines.
0 Communities
1 Members
0 Resources
MeSH Terms