Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 16

Publication Record

Connections

Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation.
Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, Hillman KM, Kaufmann S, Sivakumaran H, Moradi Marjaneh M, Lee JS, Dennis J, Bolla MK, Wang Q, Dicks E, Milne RL, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Fletcher O, Johnson N, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Flyger H, Benitez J, González-Neira A, Alonso MR, Pita G, Neuhausen SL, Anton-Culver H, Brenner H, Arndt V, Meindl A, Schmutzler RK, Brauch H, Hamann U, Tessier DC, Vincent D, Nevanlinna H, Khan S, Matsuo K, Ito H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, kConFab/AOCS Investigators, Wu AH, Van Den Berg D, Lambrechts D, Floris G, Chang-Claude J, Rudolph A, Radice P, Barile M, Couch FJ, Hallberg E, Giles GG, Haiman CA, Le Marchand L, Goldberg MS, Teo SH, Yip CH, Borresen-Dale AL, NBCS Collaborators, Zheng W, Cai Q, Winqvist R, Pylkäs K, Andrulis IL, Devilee P, Tollenaar RA, García-Closas M, Figueroa J, Hall P, Czene K, Brand JS, Darabi H, Eriksson M, Hooning MJ, Koppert LB, Li J, Shu XO, Zheng Y, Cox A, Cross SS, Shah M, Rhenius V, Choi JY, Kang D, Hartman M, Chia KS, Kabisch M, Torres D, Luccarini C, Conroy DM, Jakubowska A, Lubinski J, Sangrajrang S, Brennan P, Olswold C, Slager S, Shen CY, Hou MF, Swerdlow A, Schoemaker MJ, Simard J, Pharoah PD, Kristensen V, Chenevix-Trench G, Easton DF, Dunning AM, Edwards SL
(2016) Am J Hum Genet 99: 903-911
MeSH Terms: Alleles, Breast Neoplasms, Case-Control Studies, Cell Line, Tumor, Chromosomes, Human, Pair 5, Enhancer Elements, Genetic, Fibroblast Growth Factor 10, Genetic Predisposition to Disease, Haplotypes, Humans, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Quantitative Trait Loci, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen
Show Abstract · Added April 3, 2018
Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER) breast cancer (per-g allele OR ER = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER) breast cancer (lead SNP rs6864776: per-a allele OR ER = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10), and a single signal 3 SNP (rs200229088: per-t allele OR ER = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression.
Carver BJ, Plosa EJ, Stinnett AM, Blackwell TS, Prince LS
(2013) J Biol Chem 288: 15318-25
MeSH Terms: Active Transport, Cell Nucleus, Animals, CHO Cells, Cell Nucleus, Cricetinae, Fetus, Fibroblast Growth Factor 10, Gene Expression Regulation, Humans, Immunity, Innate, Inflammation, Lipopolysaccharides, Lung, Mice, Response Elements, Sp3 Transcription Factor, Transcription Factor RelA
Show Abstract · Added March 7, 2014
Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Cell-autonomous and non-cell-autonomous roles for IRF6 during development of the tongue.
Goudy S, Angel P, Jacobs B, Hill C, Mainini V, Smith AL, Kousa YA, Caprioli R, Prince LS, Baldwin S, Schutte BC
(2013) PLoS One 8: e56270
MeSH Terms: Animals, Bone Morphogenetic Protein 2, Bone Morphogenetic Protein 4, Cell Lineage, Fibroblast Growth Factor 10, Hedgehog Proteins, Hyaluronan Receptors, Hyaluronic Acid, Immunohistochemistry, Interferon Regulatory Factors, Mice, Mice, Knockout, Polymerase Chain Reaction, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Thymosin, Tongue
Show Abstract · Added March 20, 2014
Interferon regulatory factor 6 (IRF6) encodes a highly conserved helix-turn-helix DNA binding protein and is a member of the interferon regulatory family of DNA transcription factors. Mutations in IRF6 lead to isolated and syndromic forms of cleft lip and palate, most notably Van der Woude syndrome (VWS) and Popliteal Ptyerigium Syndrome (PPS). Mice lacking both copies of Irf6 have severe limb, skin, palatal and esophageal abnormalities, due to significantly altered and delayed epithelial development. However, a recent report showed that MCS9.7, an enhancer near Irf6, is active in the tongue, suggesting that Irf6 may also be expressed in the tongue. Indeed, we detected Irf6 staining in the mesoderm-derived muscle during development of the tongue. Dual labeling experiments demonstrated that Irf6 was expressed only in the Myf5+ cell lineage, which originates from the segmental paraxial mesoderm and gives rise to the muscles of the tongue. Fate mapping of the segmental paraxial mesoderm cells revealed a cell-autonomous Irf6 function with reduced and poorly organized Myf5+ cell lineage in the tongue. Molecular analyses showed that the Irf6-/- embryos had aberrant cytoskeletal formation of the segmental paraxial mesoderm in the tongue. Fate mapping of the cranial neural crest cells revealed non-cell-autonomous Irf6 function with the loss of the inter-molar eminence. Loss of Irf6 function altered Bmp2, Bmp4, Shh, and Fgf10 signaling suggesting that these genes are involved in Irf6 signaling. Based on these data, Irf6 plays important cell-autonomous and non-cell-autonomous roles in muscular differentiation and cytoskeletal formation in the tongue.
1 Communities
2 Members
0 Resources
16 MeSH Terms
Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury.
Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP
(2011) J Clin Invest 121: 4409-19
MeSH Terms: Animals, Cell Differentiation, Epithelial Cells, Epithelial-Mesenchymal Transition, Fibroblast Growth Factor 10, Lung Injury, Mice, Mice, Transgenic, Models, Biological, Myocytes, Smooth Muscle, Naphthalenes, Proto-Oncogene Proteins c-akt, Regeneration, Signal Transduction, Stem Cell Niche, Stem Cells, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added August 4, 2015
During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer.
1 Communities
1 Members
0 Resources
18 MeSH Terms
NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression.
Benjamin JT, Carver BJ, Plosa EJ, Yamamoto Y, Miller JD, Liu JH, van der Meer R, Blackwell TS, Prince LS
(2010) J Immunol 185: 4896-903
MeSH Terms: Animals, Chorioamnionitis, Chromatin Immunoprecipitation, Female, Fibroblast Growth Factor 10, Gene Expression, Gene Expression Regulation, Humans, Immunohistochemistry, Immunoprecipitation, Infant, Newborn, Lung, Mice, Mice, Inbred BALB C, NF-kappa B, Pregnancy, Premature Birth, Protein Kinases, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction
Show Abstract · Added March 5, 2014
Bronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial-mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood. In this study we found that soluble inflammatory mediators present in tracheal fluid from preterm infants can prevent saccular airway branching. In addition, LPS treatment led to local production of mediators that inhibited airway branching and FGF-10 expression in LPS-resistant C.C3-Tlr4(Lpsd)/J fetal mouse lung explants. Both direct NF-κB activation and inflammatory cytokines (IL-1β and TNF-α) that activate NF-κB reduced FGF-10 expression, whereas chemokines that signal via other inflammatory pathways had no effect. Mutational analysis of the FGF-10 promoter failed to identify genetic elements required for direct NF-κB-mediated FGF-10 inhibition. Instead, NF-κB activation appeared to interfere with the normal stimulation of FGF-10 expression by Sp1. Chromatin immunoprecipitation and nuclear coimmunoprecipitation studies demonstrated that the RelA subunit of NF-κB and Sp1 physically interact at the FGF-10 promoter. These findings indicate that inflammatory signaling through NF-κB disrupts the normal expression of FGF-10 in fetal lung mesenchyme by interfering with the transcriptional machinery critical for lung morphogenesis.
1 Communities
1 Members
0 Resources
20 MeSH Terms
Tbx1 is necessary for palatal elongation and elevation.
Goudy S, Law A, Sanchez G, Baldwin HS, Brown C
(2010) Mech Dev 127: 292-300
MeSH Terms: Animals, Cell Proliferation, Cleft Palate, Fibroblast Growth Factor 10, Fibroblast Growth Factor 8, Gene Expression Regulation, Developmental, Hyaluronic Acid, In Situ Hybridization, Mice, Mice, Knockout, Organ Culture Techniques, Palate, T-Box Domain Proteins, Transforming Growth Factor beta3
Show Abstract · Added May 30, 2014
The transcription factor TBX1 is a key mediator of developmental abnormalities associated with DiGeorge/Velocardiofacial Syndrome. Studies in mice have demonstrated that decreased dosage of Tbx1 results in defects in pharyngeal arch, cardiovascular, and craniofacial development. The role of Tbx1 in cardiac development has been intensely studied; however, its role in palatal development is poorly understood. By studying the Tbx1-/- mice we found defects during the critical points of palate elongation and elevation. The intrinsic palate defects in the Tbx1-/- mice were determined by measuring changes in palate shelf length, proliferation, apoptosis, expression of relevant growth factors, and in palate fusion assays. Tbx1-/- embryos exhibit cleft palate with failed palate elevation in 100% and abnormal palatal-oral fusions in 50%. In the Tbx1-/- mice the palate shelf length was reduced and tongue height was greater, demonstrating a physical impediment to palate elevation and apposition. In vitro palate fusion assays demonstrate that Tbx1-/- palate shelves are capable of fusion but a roller culture assay showed that the null palatal shelves were unable to elongate. Diminished hyaluronic acid production in the Tbx1-/- palate shelves may explain failed palate shelf elevation. In addition, cell proliferation and apoptosis were perturbed in Tbx1-/- palates. A sharp decrease of Fgf8 expression was detected in the Tbx1-/- palate shelves, suggesting that Fgf8 is dependent on Tbx1 in the palate. Fgf10 is also up-regulated in the Tbx1-/- palate shelves and tongue. These data demonstrate that Tbx1 is a critical transcription factor that guides palatal elongation and elevation and that Fgf8 expression in the palate is Tbx1-dependent.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Conditional control of the differentiation competence of pancreatic endocrine and ductal cells by Fgf10.
Kobberup S, Schmerr M, Dang ML, Nyeng P, Jensen JN, MacDonald RJ, Jensen J
(2010) Mech Dev 127: 220-34
MeSH Terms: Animals, Cell Differentiation, Cell Lineage, Doxycycline, Fibroblast Growth Factor 10, Mice, Mice, Transgenic, Pancreas
Show Abstract · Added November 6, 2013
Fgf10 is a critical component of mesenchymal-to-epithelial signaling during endodermal development. In the Fgf10 null pancreas, the embryonic progenitor population fails to expand, while ectopic Fgf10 expression forces progenitor arrest and organ hyperplasia. Using a conditional Fgf10 gain-of-function model, we observed that the timing of Fgf10 expression affected the cellular competence of the arrested pancreatic progenitors. We present evidence that the Fgf10-arrested progenitor state is reversible and that terminal differentiation resumes upon cessation of Fgf10 production. However, competence towards the individual pancreatic cell lineages depended upon the gestational time of when Fgf10 expression was attenuated. This revealed a competence window of endocrine and ductal cell formation that coincided with the pancreatic secondary transition between E13.5 and E15.5. We demonstrate that maintaining the Fgf10-arrested state during this period leads to permanent loss of competence for the endocrine and ductal cell fates. However, competence of the arrested progenitors towards the exocrine cell fate was retained throughout the secondary transition. Sustained Fgf10 expression caused irreversible loss of Ngn3 expression, which may underlie the loss of endocrine competence. Maintenance of exocrine competence may be attributable to continuous Ptf1a expression in the Fgf10-arrested progenitors. This may explain the rapid induction of Bhlhb8, a normally distalized cell intrinsic marker, following loss of ectopic Fgf10 expression. We conclude that the window for endocrine and ductal cell competence ceases during the secondary transition in pancreatic development.
Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation.
Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS
(2007) Am J Physiol Lung Cell Mol Physiol 292: L550-8
MeSH Terms: Animals, Bronchopulmonary Dysplasia, Disease Models, Animal, Female, Fetus, Fibroblast Growth Factor 10, Fibroblasts, Gene Expression Regulation, Humans, Infant, Newborn, Lipopolysaccharides, Lung, Mice, Mice, Inbred BALB C, RNA, Messenger, Toll-Like Receptor 2, Toll-Like Receptor 4, Transforming Growth Factor beta
Show Abstract · Added April 7, 2010
Many extremely preterm infants continue to suffer from bronchopulmonary dysplasia, which results from abnormal saccular-stage lung development. Here, we show that fibroblast growth factor-10 (FGF-10) is required for saccular lung development and reduced in the lung tissue of infants with bronchopulmonary dysplasia. Although exposure to bacteria increases the risk of bronchopulmonary dysplasia, no molecular target has been identified connecting inflammatory stimuli and abnormal lung development. In an experimental mouse model of saccular lung development, activation of Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) inhibited FGF-10 expression, leading to abnormal saccular airway morphogenesis. In addition, Toll-mediated FGF-10 inhibition disrupted the normal positioning of myofibroblasts around saccular airways, similar to the mislocalization of myofibroblasts seen in patients with bronchopulmonary dysplasia. Reduced FGF-10 expression may therefore link the innate immune system and impaired lung development in bronchopulmonary dysplasia.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Pattern of expression of the KGF receptor and its ligands KGF and FGF-10 during postnatal mouse mammary gland development.
Pedchenko VK, Imagawa W
(2000) Mol Reprod Dev 56: 441-7
MeSH Terms: Animals, DNA Primers, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Gene Expression, Growth Substances, Lactation, Ligands, Mammary Glands, Animal, Mice, Mice, Inbred BALB C, Pregnancy, RNA, Messenger, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Fibroblast Growth Factor, Receptors, Growth Factor, Stromal Cells, Weaning
Show Abstract · Added August 27, 2013
The expression of the KGF receptor (KGFR) and its stromal ligands, KGF and FGF-10, was compared during mouse mammary gland development. KGFR expression in mammary parenchyma is maximal in mature virgin mice, declines during pregnancy and lactation, but rises after weaning. The rise in KGFR mRNA in the virgin animal corresponds to parenchymal growth. The fall in KGFR expression in pregnancy is driven by hormone-induced alveolar differentiation since the level of KGFR mRNA is 5-fold higher in isolated ductal cells compared to alveolar cells. KGF and FGF-10 expression patterns differ during ductal development. FGF-10 is also expressed at about a 15-fold higher molar level than KGF. During pregnancy and lactation, expression of KGF and FGF-10 decreases in intact fat pads but is unchanged in parenchyma-free fat pads. Thus, the decrease in KGF and FGF-10 expression observed in intact glands during pregnancy and lactation is not a direct consequence of the changing hormonal milieu but more likely reflects an increase in the ratio of epithelium to stroma. Differences in the level and pattern of expression of mRNA for KGF, FGF-10, and the KGFR during postnatal development of the mouse mammary gland are a result of morphological development, changes in the ratio of stroma to epithelium, and hormonal regulation of cell differentiation. These changes suggest that the biological roles that these growth factors play are regulated by fluctuations in both growth factor and growth factor receptor expression and that KGF and FGF-10 may have different regulatory functions.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Attenuation and loss of hormonal modulation of KGF (FGF-7)/KGF receptor expression and mitogenesis during mammary tumor progression.
Imagawa W, Pedchenko VK, Helber J, Xing C
(2000) J Cell Physiol 184: 222-8
MeSH Terms: Animals, Cell Transformation, Neoplastic, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Growth Substances, Humans, Keratinocytes, Mammary Glands, Animal, Mammary Neoplasms, Experimental, Mice, Mitogens, Pregnancy, Progesterone, RNA, Messenger, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Fibroblast Growth Factor, Receptors, Growth Factor, Tumor Cells, Cultured
Show Abstract · Added August 27, 2013
Keratinocyte growth factor (KGF), alone and in synergism with progesterone (P) and prolactin (PRL), is mitogenic for normal mammary epithelium (ME) in vitro. In addition, P can upregulate ME sensitivity to KGF by slowing KGF receptor (KGFR) mRNA turnover in vitro. These hormonal interactions with KGF in vitro raise the possibility that alterations in these interactions can play a role in hormone-dependent mammary tumor growth and progression. The effect of hormones on KGF mitogenesis and the regulation of KGFR expression was examined in pregnancy-dependent (PDT) and ovarian-independent (OIT) mouse mammary tumors. In serum-free, collagen gel cell culture, dose/response (2-20 ng/ml) and time course studies showed that KGF stimulated the proliferation of PDT (not OIT) cells but synergism with P or PRL was not observed. The level of KGFR mRNA in PDT cells was not significantly different from normal ME but in OIT it was reduced more than 90%. P did not affect KGFR mRNA turnover in cultured PDT cells. However, KGFR mRNA was more stable in PDT cells compared to normal ME; after 6 days culture in basal medium, KGFR mRNA levels declined 40% vs. 85% previously shown for normal ME. Determination of KGF mRNA levels in tissues showed that it was lower in PDT compared to normal mammary gland and not detectable in OIT. These data show that in PDT both KGF-stimulated mitogenesis and the regulation of KGFR expression are independent of hormones. OIT has progressed to independence from any KGF influence. Thus, a subset of hormonally regulated pathways related to epithelial/stromal cell interactions can be lost in hormone-dependent mammary tumors during tumor progression.
Copyright 2000 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
20 MeSH Terms