Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 12796

Publication Record


Parental Factors Associated With the Decision to Participate in a Neonatal Clinical Trial.
Weiss EM, Olszewski AE, Guttmann KF, Magnus BE, Li S, Shah AR, Juul SE, Wu YW, Ahmad KA, Bendel-Stenzel E, Isaza NA, Lampland AL, Mathur AM, Rao R, Riley D, Russell DG, Salih ZNI, Torr CB, Weitkamp JH, Anani UE, Chang T, Dudley J, Flibotte J, Havrilla EM, Kathen CM, O'Kane AC, Perez K, Stanley BJ, Wilfond BS, Shah SK
(2021) JAMA Netw Open 4: e2032106
MeSH Terms: Biomedical Research, Clinical Trials as Topic, Female, Humans, Infant, Newborn, Male, Parental Consent, Parents, Refusal to Participate, Surveys and Questionnaires, Trust
Show Abstract · Added April 16, 2021
Importance - It remains poorly understood how parents decide whether to enroll a child in a neonatal clinical trial. This is particularly true for parents from racial or ethnic minority populations. Understanding factors associated with enrollment decisions may improve recruitment processes for families, increase enrollment rates, and decrease disparities in research participation.
Objective - To assess differences in parental factors between parents who enrolled their infant and those who declined enrollment for a neonatal randomized clinical trial.
Design, Setting, and Participants - This survey study conducted from July 2017 to October 2019 in 12 US level 3 and 4 neonatal intensive care units included parents of infants who enrolled in the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial or who were eligible but declined enrollment. Data were analyzed October 2019 through July 2020.
Exposure - Parental choice of enrollment in neonatal clinical trial.
Main Outcomes and Measures - Percentages and odds ratios (ORs) of parent participation as categorized by demographic characteristics, self-assessment of child's medical condition, study comprehension, and trust in medical researchers. Survey questions were based on the hypothesis that parents who enrolled their infant in HEAL differ from those who declined enrollment across 4 categories: (1) infant characteristics and parental demographic characteristics, (2) perception of infant's illness, (3) study comprehension, and (4) trust in clinicians and researchers.
Results - Of a total 387 eligible parents, 269 (69.5%) completed the survey and were included in analysis. This included 183 of 242 (75.6%) of HEAL-enrolled and 86 of 145 (59.3%) of HEAL-declined parents. Parents who enrolled their infant had lower rates of Medicaid participation (74 [41.1%] vs 47 [55.3%]; P = .04) and higher rates of annual income greater than $55 000 (94 [52.8%] vs 30 [37.5%]; P = .03) compared with those who declined. Black parents had lower enrollment rates compared with White parents (OR, 0.35; 95% CI, 0.17-0.73). Parents who reported their infant's medical condition as more serious had higher enrollment rates (OR, 5.7; 95% CI, 2.0-16.3). Parents who enrolled their infant reported higher trust in medical researchers compared with parents who declined (mean [SD] difference, 5.3 [0.3-10.3]). There was no association between study comprehension and enrollment.
Conclusions and Relevance - In this study, the following factors were associated with neonatal clinical trial enrollment: demographic characteristics (ie, race/ethnicity, Medicaid status, and reported income), perception of illness, and trust in medical researchers. Future work to confirm these findings and explore the reasons behind them may lead to strategies for better engaging underrepresented groups in neonatal clinical research to reduce enrollment disparities.
0 Communities
1 Members
0 Resources
MeSH Terms
Genetic architecture of host proteins involved in SARS-CoV-2 infection.
Pietzner M, Wheeler E, Carrasco-Zanini J, Raffler J, Kerrison ND, Oerton E, Auyeung VPW, Luan J, Finan C, Casas JP, Ostroff R, Williams SA, Kastenmüller G, Ralser M, Gamazon ER, Wareham NJ, Hingorani AD, Langenberg C
(2020) Nat Commun 11: 6397
MeSH Terms: ABO Blood-Group System, Aptamers, Peptide, Blood Coagulation, COVID-19, Drug Delivery Systems, Female, Gene Expression Regulation, Host-Derived Cellular Factors, Host-Pathogen Interactions, Humans, Internet, Male, Middle Aged, Proteins, Quantitative Trait Loci, SARS-CoV-2
Show Abstract · Added December 18, 2020
Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).
0 Communities
1 Members
0 Resources
16 MeSH Terms
COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic's Impact in Type 1 and Type 2 Diabetes.
Gregory JM, Slaughter JC, Duffus SH, Smith TJ, LeStourgeon LM, Jaser SS, McCoy AB, Luther JM, Giovannetti ER, Boeder S, Pettus JH, Moore DJ
(2021) Diabetes Care 44: 526-532
MeSH Terms: COVID-19, Comorbidity, Diabetes Mellitus, Type 1, Diabetes Mellitus, Type 2, Electronic Health Records, Female, Hospitalization, Humans, Hypertension, Male, Middle Aged, Odds Ratio, Prospective Studies, Severity of Illness Index
Show Abstract · Added December 7, 2020
OBJECTIVE - To quantify and contextualize the risk for coronavirus disease 2019 (COVID-19)-related hospitalization and illness severity in type 1 diabetes.
RESEARCH DESIGN AND METHODS - We conducted a prospective cohort study to identify case subjects with COVID-19 across a regional health care network of 137 service locations. Using an electronic health record query, chart review, and patient contact, we identified clinical factors influencing illness severity.
RESULTS - We identified COVID-19 in 6,138, 40, and 273 patients without diabetes and with type 1 and type 2 diabetes, respectively. Compared with not having diabetes, people with type 1 diabetes had adjusted odds ratios of 3.90 (95% CI 1.75-8.69) for hospitalization and 3.35 (95% CI 1.53-7.33) for greater illness severity, which was similar to risk in type 2 diabetes. Among patients with type 1 diabetes, glycosylated hemoglobin (HbA), hypertension, race, recent diabetic ketoacidosis, health insurance status, and less diabetes technology use were significantly associated with illness severity.
CONCLUSIONS - Diabetes status, both type 1 and type 2, independently increases the adverse impacts of COVID-19. Potentially modifiable factors (e.g., HbA) had significant but modest impact compared with comparatively static factors (e.g., race and insurance) in type 1 diabetes, indicating an urgent and continued need to mitigate severe acute respiratory syndrome coronavirus 2 infection risk in this community.
© 2020 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Aerosolized Calfactant for Newborns With Respiratory Distress: A Randomized Trial.
Cummings JJ, Gerday E, Minton S, Katheria A, Albert G, Flores-Torres J, Famuyide M, Lampland A, Guthrie S, Kuehn D, Weitkamp JH, Fort P, Abu Jawdeh EG, Ryan RM, Martin GC, Swanson JR, Mulrooney N, Eyal F, Gerstmann D, Kumar P, Wilding GE, Egan EA, AERO-02 STUDY INVESTIGATORS
(2020) Pediatrics 146:
MeSH Terms: Administration, Oral, Aerosols, Biological Products, Cohort Studies, Female, Gestational Age, Humans, Infant, Newborn, Intensive Care Units, Neonatal, Intubation, Intratracheal, Male, Nebulizers and Vaporizers, Prospective Studies, Pulmonary Surfactants, Respiratory Distress Syndrome, Newborn
Show Abstract · Added April 16, 2021
BACKGROUND - Exogenous surfactants to treat respiratory distress syndrome (RDS) are approved for tracheal instillation only; this requires intubation, often followed by positive pressure ventilation to promote distribution. Aerosol delivery offers a safer alternative, but clinical studies have had mixed results. We hypothesized that efficient aerosolization of a surfactant with low viscosity, early in the course of RDS, could reduce the need for intubation and instillation of liquid surfactant.
METHODS - A prospective, multicenter, randomized, unblinded comparison trial of aerosolized calfactant (Infasurf) in newborns with signs of RDS that required noninvasive respiratory support. Calfactant was aerosolized by using a Solarys nebulizer modified with a pacifier adapter; 6 mL/kg (210 mg phospholipid/kg body weight) were delivered directly into the mouth. Infants in the aerosol group received up to 3 treatments, at least 4 hours apart. Infants in the control group received usual care, determined by providers. Infants were intubated and given instilled surfactant for persistent or worsening respiratory distress, at their providers' discretion.
RESULTS - Among 22 NICUs, 457 infants were enrolled; gestation 23 to 41 (median 33) weeks and birth weight 595 to 4802 (median 1960) grams. In total, 230 infants were randomly assigned to aerosol; 225 received 334 treatments, starting at a median of 5 hours. The rates of intubation for surfactant instillation were 26% in the aerosol group and 50% in the usual care group ( < .0001). Respiratory outcomes up to 28 days of age were no different.
CONCLUSIONS - In newborns with early, mild to moderate respiratory distress, aerosolized calfactant at a dose of 210 mg phospholipid/kg body weight reduced intubation and surfactant instillation by nearly one-half.
Copyright © 2020 by the American Academy of Pediatrics.
0 Communities
1 Members
0 Resources
MeSH Terms
Increased canonical NF-kappaB signaling specifically in macrophages is sufficient to limit tumor progression in syngeneic murine models of ovarian cancer.
Hoover AA, Hufnagel DH, Harris W, Bullock K, Glass EB, Liu E, Barham W, Crispens MA, Khabele D, Giorgio TD, Wilson AJ, Yull FE
(2020) BMC Cancer 20: 970
MeSH Terms: Animals, Cell Line, Tumor, Disease Models, Animal, Disease Progression, Female, Humans, Macrophages, Mice, Mice, Transgenic, NF-kappa B, Signal Transduction
Show Abstract · Added January 29, 2021
BACKGROUND - New treatment options for ovarian cancer are urgently required. Tumor-associated macrophages (TAMs) are an attractive target for therapy; repolarizing TAMs from M2 (pro-tumor) to M1 (anti-tumor) phenotypes represents an important therapeutic goal. We have previously shown that upregulated NF-kappaB (NF-κB) signaling in macrophages promotes M1 polarization, but effects in the context of ovarian cancer are unknown. Therefore, we aimed to investigate the therapeutic potential of increasing macrophage NF-κB activity in immunocompetent mouse models of ovarian cancer.
METHODS - We have generated a transgenic mouse model, termed IKFM, which allows doxycycline-inducible overexpression of a constitutively active form of IKK2 (cIKK2) specifically within macrophages. The IKFM model was used to evaluate effects of increasing macrophage NF-κB activity in syngeneic murine TBR5 and ID8-Luc models of ovarian cancer in two temporal windows: 1) in established tumors, and 2) during tumor implantation and early tumor growth. Tumor weight, ascites volume, ascites supernatant and cells, and solid tumor were collected at sacrifice. Populations of macrophages and T cells within solid tumor and/or ascites were analyzed by immunofluorescent staining and qPCR, and soluble factors in ascitic fluid were analyzed by ELISA. Comparisons of control versus IKFM groups were performed by 2-tailed Mann-Whitney test, and a P-value < 0.05 was considered statistically significant.
RESULTS - Increased expression of the cIKK2 transgene in TAMs from IKFM mice was confirmed at the mRNA and protein levels. Tumors from IKFM mice, regardless of the timing of doxycycline (dox) administration, demonstrated greater necrosis and immune infiltration than control tumors. Analysis of IKFM ascites and tumors showed sustained shifts in macrophage populations away from the M2 and towards the anti-tumor M1 phenotype. There were also increased tumor-infiltrating CD3/CD8 T cells in IKFM mice, accompanied by higher levels of CXCL9, a T cell activating factor secreted by macrophages, in IKFM ascitic fluid.
CONCLUSIONS - In syngeneic ovarian cancer models, increased canonical NF-κB signaling in macrophages promoted anti-tumor TAM phenotypes and increased cytotoxic T cell infiltration, which was sufficient to limit tumor progression. This may present a novel translational approach for ovarian cancer treatment, with the potential to increase responses to T cell-directed therapy in future studies.
1 Communities
0 Members
0 Resources
11 MeSH Terms
Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with coronavirus disease 2019.
Kimura KS, Freeman MH, Wessinger BC, Gupta V, Sheng Q, Huang LC, Von Wahlde K, Das SR, Chowdhury NI, Turner JH
(2020) Int Forum Allergy Rhinol 10: 1325-1328
MeSH Terms: Adult, COVID-19, Female, Humans, Male, Middle Aged, Nasal Lavage, SARS-CoV-2, Saline Solution, Hypertonic, Surface-Active Agents, Treatment Outcome
Added September 23, 2020
0 Communities
1 Members
0 Resources
11 MeSH Terms
The GTEx Consortium atlas of genetic regulatory effects across human tissues.
GTEx Consortium
(2020) Science 369: 1318-1330
MeSH Terms: Datasets as Topic, Disease, Female, Gene Expression Regulation, Genome-Wide Association Study, Humans, Male, Organ Specificity, Quantitative Trait Loci, Sequence Analysis, RNA
Show Abstract · Added September 15, 2020
The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The impact of sex on gene expression across human tissues.
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, Castel SE, Mohammadi P, Aguet F, Zou Y, Khramtsova EA, Skol AD, Garrido-Martín D, Reverter F, Brown A, Evans P, Gamazon ER, Payne A, Bonazzola R, Barbeira AN, Hamel AR, Martinez-Perez A, Soria JM, GTEx Consortium, Pierce BL, Stephens M, Eskin E, Dermitzakis ET, Segrè AV, Im HK, Engelhardt BE, Ardlie KG, Montgomery SB, Battle AJ, Lappalainen T, Guigó R, Stranger BE
(2020) Science 369:
MeSH Terms: Chromosomes, Human, X, Disease, Epigenesis, Genetic, Female, Gene Expression, Gene Expression Regulation, Genetic Variation, Genome-Wide Association Study, Humans, Male, Organ Specificity, Promoter Regions, Genetic, Quantitative Trait Loci, Sex Characteristics, Sex Factors
Show Abstract · Added September 15, 2020
Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
15 MeSH Terms
A Transcriptome-Wide Association Study Identifies Candidate Susceptibility Genes for Pancreatic Cancer Risk.
Liu D, Zhou D, Sun Y, Zhu J, Ghoneim D, Wu C, Yao Q, Gamazon ER, Cox NJ, Wu L
(2020) Cancer Res 80: 4346-4354
MeSH Terms: Age Factors, Case-Control Studies, European Continental Ancestry Group, Female, Gene Expression Regulation, Neoplastic, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Models, Genetic, Pancreatic Neoplasms, Polymorphism, Single Nucleotide
Show Abstract · Added September 15, 2020
Pancreatic cancer is among the most well-characterized cancer types, yet a large proportion of the heritability of pancreatic cancer risk remains unclear. Here, we performed a large transcriptome-wide association study to systematically investigate associations between genetically predicted gene expression in normal pancreas tissue and pancreatic cancer risk. Using data from 305 subjects of mostly European descent in the Genotype-Tissue Expression Project, we built comprehensive genetic models to predict normal pancreas tissue gene expression, modifying the UTMOST (unified test for molecular signatures). These prediction models were applied to the genetic data of 8,275 pancreatic cancer cases and 6,723 controls of European ancestry. Thirteen genes showed an association of genetically predicted expression with pancreatic cancer risk at an FDR ≤ 0.05, including seven previously reported genes (, and ) and six novel genes not yet reported for pancreatic cancer risk [6q27: OR (95% confidence interval (CI), 1.54 (1.25-1.89); 13q12.13: OR (95% CI), 0.78 (0.70-0.88); 14q24.3: OR (95% CI), 1.35 (1.17-1.56); 17q12: OR (95% CI), 6.49 (2.96-14.27); 17q21.1: OR (95% CI), 1.94 (1.45-2.58); and 20p13: OR (95% CI): 1.41 (1.20-1.66)]. The associations for 10 of these genes (, and ) remained statistically significant even after adjusting for risk SNPs identified in previous genome-wide association study. Collectively, this analysis identified novel candidate susceptibility genes for pancreatic cancer that warrant further investigation. SIGNIFICANCE: A transcriptome-wide association analysis identified seven previously reported and six novel candidate susceptibility genes for pancreatic cancer risk.
©2020 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Metabolomics reveals the impact of Type 2 diabetes on local muscle and vascular responses to ischemic stress.
Beckman JA, Hu JR, Huang S, Farber-Eger E, Wells QS, Wang TJ, Gerszten RE, Ferguson JF
(2020) Clin Sci (Lond) 134: 2369-2379
MeSH Terms: Brachial Artery, Case-Control Studies, Diabetes Mellitus, Type 2, Endothelium, Vascular, Extremities, Female, Humans, Ischemia, Male, Metabolome, Metabolomics, Middle Aged, Muscle, Skeletal, Phosphorylcholine, Regional Blood Flow, Signal Transduction, Vasodilation
Show Abstract · Added September 14, 2020
OBJECTIVE - Type 2 diabetes mellitus (T2DM) reduces exercise capacity, but the mechanisms are incompletely understood. We probed the impact of ischemic stress on skeletal muscle metabolite signatures and T2DM-related vascular dysfunction.
METHODS - we recruited 38 subjects (18 healthy, 20 T2DM), placed an antecubital intravenous catheter, and performed ipsilateral brachial artery reactivity testing. Blood samples for plasma metabolite profiling were obtained at baseline and immediately upon cuff release after 5 min of ischemia. Brachial artery diameter was measured at baseline and 1 min after cuff release.
RESULTS - as expected, flow-mediated vasodilation was attenuated in subjects with T2DM (P<0.01). We confirmed known T2DM-associated baseline differences in plasma metabolites, including homocysteine, dimethylguanidino valeric acid and β-alanine (all P<0.05). Ischemia-induced metabolite changes that differed between groups included 5-hydroxyindoleacetic acid (healthy: -27%; DM +14%), orotic acid (healthy: +5%; DM -7%), trimethylamine-N-oxide (healthy: -51%; DM +0.2%), and glyoxylic acid (healthy: +19%; DM -6%) (all P<0.05). Levels of serine, betaine, β-aminoisobutyric acid and anthranilic acid were associated with vessel diameter at baseline, but only in T2DM (all P<0.05). Metabolite responses to ischemia were significantly associated with vasodilation extent, but primarily observed in T2DM, and included enrichment in phospholipid metabolism (P<0.05).
CONCLUSIONS - our study highlights impairments in muscle and vascular signaling at rest and during ischemic stress in T2DM. While metabolites change in both healthy and T2DM subjects in response to ischemia, the relationship between muscle metabolism and vascular function is modified in T2DM, suggesting that dysregulated muscle metabolism in T2DM may have direct effects on vascular function.
© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
0 Communities
1 Members
0 Resources
17 MeSH Terms