Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 399

Publication Record


Utilizing Untargeted Ion Mobility-Mass Spectrometry To Profile Changes in the Gut Metabolome Following Biliary Diversion Surgery.
Poland JC, Schrimpe-Rutledge AC, Sherrod SD, Flynn CR, McLean JA
(2019) Anal Chem 91: 14417-14423
MeSH Terms: Anastomosis, Surgical, Animals, Bile Acids and Salts, Bile Ducts, Cholesterol, Chromatography, Liquid, Duodenum, Fatty Acids, Volatile, Feces, Gastrointestinal Microbiome, Ileum, Jejunum, Male, Mass Spectrometry, Mice, Inbred C57BL
Show Abstract · Added December 17, 2019
Obesity and obesity-related disorders are a global epidemic affecting over 10% of the world's population. Treatment of these diseases has become increasingly challenging and expensive. The most effective and durable treatment for Class III obesity (body mass index ≥35 kg/m) is bariatric surgery, namely, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy. These procedures are associated with increased circulating bile acids, molecules that not only facilitate intestinal fat absorption but are also potent hormones regulating numerous metabolic pathways. We recently reported on a novel surgical procedure in mice, termed distal gallbladder bile diversion to the ileum (GB-IL), that emulates the altered bile flow after RYGB without other manipulations of gastrointestinal anatomy. GB-IL improves oral glucose tolerance in mice made obese with high-fat diet. This is accompanied by fat malabsorption and weight loss, which complicates studying the role of elevated circulating bile acids in metabolic control. A less aggressive surgery in which the gallbladder bile is diverted to the proximal ileum, termed GB-IL, also improves glucose control but is not accompanied by fat malabsorption. To better understand the differential effects achieved by these bile diversion procedures, an untargeted ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) method was optimized for fecal samples derived from mice that have undergone bile diversion surgery. Utilizing the UPLC-IM-MS method, we were able to identify dysregulation of bile acids, short-chain fatty acids, and cholesterol derivatives that contribute to the differential metabolism resulting from these surgeries.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Impact of Acipimox Therapy on Free Fatty Acid Efflux and Endothelial Function in the Metabolic Syndrome: A Randomized Trial.
Aday AW, Goldfine AB, Gregory JM, Beckman JA
(2019) Obesity (Silver Spring) 27: 1812-1819
MeSH Terms: Adult, Aged, Blood Glucose, Cross-Over Studies, Double-Blind Method, Endothelium, Vascular, Fatty Acids, Nonesterified, Female, Humans, Hypolipidemic Agents, Insulin, Insulin Resistance, Lipid Metabolism, Male, Metabolic Syndrome, Middle Aged, Pyrazines, Vasodilation
Show Abstract · Added October 2, 2019
OBJECTIVE - Insulin resistance is associated with increased lipolysis and elevated concentrations of free fatty acids (FFA), which in turn contribute to impaired vascular function. It was hypothesized that lowering FFA with acipimox, a nicotinic acid derivative that impairs FFA efflux, would improve endothelial function, measured by flow-mediated dilation (FMD), in individuals with metabolic syndrome.
METHODS - A total of 18 participants with metabolic syndrome and 17 healthy controls were enrolled and treated with acipimox 250 mg orally every 6 hours or placebo for 7 days in a randomized, double-blind, crossover trial.
RESULTS - Acipimox reduced FFA concentrations among individuals with metabolic syndrome to near normal levels (P = 0.01), but there was no change among healthy controls (P = 0.17). Acipimox did not improve endothelial-dependent FMD in either group (metabolic syndrome: P = 0.42; healthy controls: P = 0.16), although endothelial-independent nitroglycerin-mediated dilation among those with metabolic syndrome tended to increase (20.3%, P = 0.06). There were no changes in blood lipids or markers of inflammation following therapy. There was minimal correlation between change in FMD and baseline measures of BMI ( ρ = -0.09) or waist circumference ( ρ = -0.15).
CONCLUSIONS - In groups with normal or elevated baseline FFA, short-term reductions do not improve endothelial function assessed by FMD.
© 2019 The Obesity Society.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content.
Coolbaugh CL, Damon BM, Bush EC, Welch EB, Towse TF
(2019) Sci Rep 9: 13600
MeSH Terms: Adipose Tissue, Brown, Adult, Cold Temperature, Fatty Acids, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Oxidation-Reduction, Young Adult
Show Abstract · Added March 3, 2020
Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-water magnetic resonance imaging during individualized cooling to 3 °C above a participant's shiver threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling (59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped into FSF decades (0-10%, 10-20%…90-100%) according to their initial value. Brown adipose tissue contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60-100% (P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in voxels with initial FSF values of 0-30% (P < 0.05). These data suggest that in healthy young men, cold exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.
0 Communities
1 Members
0 Resources
9 MeSH Terms
A Role for the Orphan Human Cytochrome P450 2S1 in Polyunsaturated Fatty Acid -1 Hydroxylation Using an Untargeted Metabolomic Approach.
Fekry MI, Xiao Y, Berg JZ, Guengerich FP
(2019) Drug Metab Dispos 47: 1325-1332
MeSH Terms: Animals, Cytochrome P-450 CYP4A, Cytochrome P-450 Enzyme System, Fatty Acids, Unsaturated, Female, Gastrointestinal Tract, Humans, Hydroxylation, Isotope Labeling, Metabolomics, Rats
Show Abstract · Added March 3, 2020
Cytochrome P450 (P450) 2S1 is one of the orphan P450s, known to be expressed but not having a defined function with an endogenous substrate or in drug oxidations. Although it has been clearly demonstrated to catalyze reductive reactions, its role in NADPH-dependent oxidations has been ambiguous. In our efforts to characterize orphan human P450 enzymes, we used an untargeted liquid chromatography-mass spectromterymetabolomic approach with recombinant human P450 2S1 and extracts of rat stomach and intestine, sites of P450 2S1 localization in humans and animals. The search yielded several candidates, including the product 19-hydroxyarachidonic acid. Subsequent O analysis and in vitro studies with commercial arachidonic acid and 19-hydroxyarachidonic acid were used to validate -1 hydroxylation of the former molecule as a NADPH- and O-dependent reaction. Steady-state kinetic assays were done for -1 hydroxylation reactions of P450 2S1 with several other long-chain fatty acids, including arachidonic, linoleic, -linolenic, eicosapentaenoic, and docosapentaenoic acids. Rates of hydroxylation were slow, but no detectable activity was seen with either medium-chain length or saturated fatty acids. P450 2S1 is known to be expressed, at least at the mRNA level, to the extent of some other non-3A subfamily P450s in the human gastrointestinal tract, and the activity may be relevant. We conclude that P450 2S1 is a fatty acid -1 hydroxylase, although the physiologic relevance of these oxidations remains to be established. The metabolomic approaches we employed in this study are feasible for orphan P450s and other enzymes, in regard to annotation of function, in mammals and other organisms. SIGNIFICANCE STATEMENT: An untargeted mass spectrometry approach was utilized to identify -1 hydroxylation of arachidonic acid as an oxidative reaction catalyzed by human cytochrome P450 2S1. The enzyme also catalyzes the relatively slow -1 hydroxylation of several other unsaturated long-chain fatty acids.
Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis.
Williams D, Fingleton B
(2019) Clin Exp Metastasis 36: 211-224
MeSH Terms: ATP Citrate (pro-S)-Lyase, Disease Progression, Energy Metabolism, Fatty Acids, Glucose, Glucose-6-Phosphate Isomerase, Glutaminase, Glutamine, Humans, Isocitrate Dehydrogenase, Neoplasm Metastasis, Neoplasms
Show Abstract · Added March 24, 2020
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.
0 Communities
1 Members
0 Resources
MeSH Terms
Serum Polyunsaturated Fatty Acids Correlate with Serum Cytokines and Clinical Disease Activity in Crohn's Disease.
Scoville EA, Allaman MM, Adams DW, Motley AK, Peyton SC, Ferguson SL, Horst SN, Williams CS, Beaulieu DB, Schwartz DA, Wilson KT, Coburn LA
(2019) Sci Rep 9: 2882
MeSH Terms: Adipokines, Adult, Biomarkers, Case-Control Studies, Crohn Disease, Cytokines, Fatty Acids, Unsaturated, Female, Follow-Up Studies, Humans, Inflammation Mediators, Male, Middle Aged, Prognosis, Prospective Studies, Severity of Illness Index
Show Abstract · Added March 16, 2019
Crohn's disease (CD) has been associated with an increased consumption of n-6 polyunsaturated fatty acid (PUFA), while greater intake of n-3 PUFA has been associated with a reduced risk. We sought to investigate serum fatty acid composition in CD, and associations of fatty acids with disease activity, cytokines, and adipokines. Serum was prospectively collected from 116 CD subjects and 27 non-IBD controls. Clinical disease activity was assessed by the Harvey Bradshaw Index (HBI). Serum fatty acids were measured by gas chromatography. Serum cytokines and adipokines were measured by Luminex assay. Dietary histories were obtained from a subset of patients. Nine serum cytokines and adipokines were increased in CD versus controls. CD subjects had increased percentage serum monounsaturated fatty acids (MUFA), dihomo-gamma linolenic acid (DGLA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and oleic acid, but decreased arachidonic acid (AA) versus controls. The % total n-3 fatty acids and % EPA directly correlated with pro-inflammatory cytokine levels and HBI, whereas the % total n-6 fatty acids were inversely correlated with pro-inflammatory cytokine levels and HBI. CD subjects had increased caloric intake versus controls, but no alterations in total fat or PUFA intake. We found differences in serum fatty acids, most notably PUFA, in CD that correlated both with clinical disease activity and inflammatory cytokines. Our findings indicate that altered fatty acid metabolism or utilization is present in CD and is related to disease activity.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptor Mice Improves Indices of Cardiometabolic Disease.
May-Zhang LS, Chen Z, Dosoky NS, Yancey PG, Boyd KL, Hasty AH, Linton MF, Davies SS
(2019) Sci Rep 9: 420
MeSH Terms: Animals, Cardiovascular Diseases, Escherichia coli, Fatty Acids, Gastrointestinal Microbiome, Liver, Liver Cirrhosis, Mice, Phosphatidylethanolamines, Receptors, LDL, Triglycerides
Show Abstract · Added January 30, 2019
Obesity increases the risk for cardiometabolic diseases. N-acyl phosphatidylethanolamines (NAPEs) are precursors of N-acylethanolamides, which are endogenous lipid satiety factors. Incorporating engineered bacteria expressing NAPEs into the gut microbiota retards development of diet induced obesity in wild-type mice. Because NAPEs can also exert anti-inflammatory effects, we hypothesized that administering NAPE-expressing bacteria to low-density lipoprotein receptor (Ldlr) mice fed a Western diet would improve various indices of cardiometabolic disease manifested by these mice. NAPE-expressing E. coli Nissle 1917 (pNAPE-EcN), control Nissle 1917 (pEcN), or vehicle (veh) were given via drinking water to Ldlr mice for 12 weeks. Compared to pEcN or veh treatment, pNAPE-EcN significantly reduced body weight and adiposity, hepatic triglycerides, fatty acid synthesis genes, and increased expression of fatty acid oxidation genes. pNAPE-EcN also significantly reduced markers for hepatic inflammation and early signs of fibrotic development. Serum cholesterol was reduced with pNAPE-EcN, but atherosclerotic lesion size showed only a non-significant trend for reduction. However, pNAPE-EcN treatment reduced lesion necrosis by 69% indicating an effect on preventing macrophage inflammatory death. Our results suggest that incorporation of NAPE expressing bacteria into the gut microbiota can potentially serve as an adjuvant therapy to retard development of cardiometabolic disease.
1 Communities
4 Members
0 Resources
11 MeSH Terms
Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes.
Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R
(2019) J Nutr Biochem 64: 45-49
MeSH Terms: Adipocytes, Cell Differentiation, Cells, Cultured, Coculture Techniques, Docosahexaenoic Acids, Eicosapentaenoic Acid, Fatty Acids, Omega-3, Humans, Inflammation, Leukocytes, Lipid Droplets, Lipopolysaccharides, Macrophages, Obesity
Show Abstract · Added April 2, 2019
BACKGROUND - Omega-3 polyunsaturated fatty acids, specifically the fish-oil-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been proposed as inflammation-resolving agents via their effects on adipose tissue.
OBJECTIVE - We proposed to determine the effects of EPA and DHA on human adipocyte differentiation and inflammatory activation in vitro.
METHODS - Primary human subcutaneous adipocytes from lean and obese subjects were treated with 100 μM EPA and/or DHA throughout differentiation (differentiation studies) or for 72 h postdifferentiation (inflammatory studies). THP-1 monocytes were added to adipocyte wells for co-culture experiments. Subcutaneous and visceral adipose explants from obese subjects were treated for 72 h with EPA and DHA. Oil Red O staining was performed on live cells. Cells were collected for mRNA analysis by quantitative polymerase chain reaction, and media were collected for protein quantification by enzyme-linked immunosorbent assay.
RESULTS - Incubation with EPA and/or DHA attenuated inflammatory response to lipopolysaccharide (LPS) and monocyte co-culture with reduction in post-LPS mRNA expression and protein levels of IL6, CCL2 and CX3CL1. Expression of inflammatory genes was also reduced in the endogenous inflammatory response in obese adipose. Both DHA and EPA reduced lipid droplet formation and lipogenic gene expression without alteration in expression of adipogenic genes or adiponectin secretion.
CONCLUSIONS - EPA and DHA attenuate inflammatory activation of in vitro human adipocytes and reduce lipogenesis.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Fatty acid receptor modulator PBI-4050 inhibits kidney fibrosis and improves glycemic control.
Li Y, Chung S, Li Z, Overstreet JM, Gagnon L, Grouix B, Leduc M, Laurin P, Zhang MZ, Harris RC
(2018) JCI Insight 3:
MeSH Terms: Acetates, Animals, Blood Glucose, Diabetic Nephropathies, Disease Models, Animal, Fatty Acids, Fibrosis, Kidney, Membrane Proteins, Mice, Receptors, Cell Surface
Show Abstract · Added May 29, 2018
Extensive kidney fibrosis occurs in several types of chronic kidney diseases. PBI-4050, a potentially novel first-in-class orally active low-molecular weight compound, has antifibrotic and antiinflammatory properties. We examined whether PBI-4050 affected the progression of diabetic nephropathy (DN) in a mouse model of accelerated type 2 diabetes and in a model of selective tubulointerstitial fibrosis. eNOS-/- db/db mice were treated with PBI-4050 from 8-20 weeks of age (early treatment) or from 16-24 weeks of age (late treatment). PBI-4050 treatment ameliorated the fasting hyperglycemia and abnormal glucose tolerance tests seen in vehicle-treated mice. In addition, PBI-4050 preserved (early treatment) or restored (late treatment) blood insulin levels and increased autophagy in islets. PBI-4050 treatment led to significant improvements in lifespan in the diabetic mice. Both early and late PBI-4050 treatment protected against progression of DN, as indicated by reduced histological glomerular injury and albuminuria, slow decline of glomerular filtration rate, and loss of podocytes. PBI-4050 inhibited kidney macrophage infiltration, oxidative stress, and TGF-β-mediated fibrotic signaling pathways, and it also protected against the development of tubulointerstitial fibrosis. To confirm a direct antiinflammatory/antifibrotic effect in the kidney, further studies with a nondiabetic model of EGFR-mediated proximal tubule activation confirmed that PBI-4050 dramatically decreased the development of the associated tubulointerstitial injury and macrophage infiltration. These studies suggest that PBI-4050 attenuates development of DN in type 2 diabetes through improvement of glycemic control and inhibition of renal TGF-β-mediated fibrotic pathways, in association with decreases in macrophage infiltration and oxidative stress.
1 Communities
0 Members
0 Resources
11 MeSH Terms
The Vasculature in Prediabetes.
Wasserman DH, Wang TJ, Brown NJ
(2018) Circ Res 122: 1135-1150
MeSH Terms: Angiotensin-Converting Enzyme Inhibitors, Animals, Blood Vessels, Cardiovascular Diseases, Combined Modality Therapy, Diabetes Mellitus, Type 2, Diet, Reducing, Disease Progression, Endothelium, Vascular, Extracellular Matrix, Fatty Acids, Nonesterified, Fibrinolysis, Glucose, Humans, Hyperglycemia, Hypoglycemic Agents, Inflammation, Insulin Resistance, Life Style, Metabolic Syndrome, Mice, MicroRNAs, Microcirculation, Muscle, Skeletal, Obesity, Prediabetic State, Risk, Weight Loss
Show Abstract · Added March 26, 2019
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
© 2018 American Heart Association, Inc.
1 Communities
0 Members
0 Resources
28 MeSH Terms