Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 240

Publication Record

Connections

Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20.
Wang Z, Schey KL
(2018) Invest Ophthalmol Vis Sci 59: 5648-5658
MeSH Terms: Animals, Aquaporin 5, Blotting, Western, Cattle, Chromatography, Liquid, Electrophoresis, Polyacrylamide Gel, Eye Proteins, Immunoblotting, Lens, Crystalline, Lipoylation, Membrane Proteins, Palmitates, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 4, 2019
Purpose - The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein-protein interactions in the lens.
Methods - The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange.
Results - The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus.
Conclusions - AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
0 Communities
1 Members
0 Resources
14 MeSH Terms
The Role of Aquaporins in Ocular Lens Homeostasis.
Schey KL, Petrova RS, Gletten RB, Donaldson PJ
(2017) Int J Mol Sci 18:
MeSH Terms: Animals, Aquaporins, Biological Transport, Active, Eye Proteins, Homeostasis, Humans, Lens, Crystalline, Permeability, Protein Isoforms, Water
Show Abstract · Added April 3, 2018
Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells.
Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ
(2018) Am J Physiol Cell Physiol 314: C191-C201
MeSH Terms: Animals, Aquaporin 5, Aquaporins, Cell Membrane, Epithelial Cells, Eye Proteins, Lens, Crystalline, Mercuric Chloride, Mice, Inbred C57BL, Models, Biological, Organ Culture Techniques, Permeability, Rats, Wistar, Species Specificity, Time Factors, Water
Show Abstract · Added April 3, 2018
Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (P) some 20 times higher than AQP0, AQP5 could function to modulate P in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative P of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of P, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg-sensitive contribution to P. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg-sensitive P was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating P in the outer cortex.
0 Communities
1 Members
0 Resources
16 MeSH Terms
In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye.
Lapierre-Landry M, Gordon AY, Penn JS, Skala MC
(2017) Sci Rep 7: 9228
MeSH Terms: Animals, Contrast Media, Disease Models, Animal, Eye Diseases, Mice, Retina, Tomography, Optical Coherence
Show Abstract · Added April 10, 2019
Optical coherence tomography (OCT) has become a standard-of-care in retinal imaging. OCT allows non-invasive imaging of the tissue structure but lacks specificity to contrast agents that could be used for in vivo molecular imaging. Photothermal OCT (PT-OCT) is a functional OCT-based technique that has been developed to detect absorbers in a sample. We demonstrate in vivo PT-OCT in the eye for the first time on both endogenous (melanin) and exogenous (gold nanorods) absorbers. Pigmented mice and albino mice (n = 6 eyes) were used to isolate the photothermal signal from the melanin in the retina. Pigmented mice with laser-induced choroidal neovascularization lesions (n = 7 eyes) were also imaged after a systemic injection of gold nanorods to observe their passive accumulation in the retina. This experiment demonstrates the feasibility of PT-OCT to image the distribution of both endogenous and exogenous absorbers in the mouse retina.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI.
Sengupta S, Smith DS, Smith AK, Welch EB, Smith SA
(2017) Invest Ophthalmol Vis Sci 58: 4390–4398
MeSH Terms: Adult, Eye, Eye Movements, Female, Healthy Volunteers, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Ocular Physiological Phenomena, Oculomotor Muscles, Optic Nerve, Retrospective Studies
Show Abstract · Added April 10, 2019
Purpose - The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion.
Methods - Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated.
Results - Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s.
Conclusions - This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.
0 Communities
1 Members
0 Resources
MeSH Terms
Hotspots of age-related protein degradation: the importance of neighboring residues for the formation of non-disulfide crosslinks derived from cysteine.
Friedrich MG, Wang Z, Oakley AJ, Schey KL, Truscott RJW
(2017) Biochem J 474: 2475-2487
MeSH Terms: Age Factors, Alanine, Cysteine, Databases, Protein, Disulfides, Eye Proteins, Humans, Lens, Crystalline, Models, Molecular, Oligopeptides, Proteolysis, Tandem Mass Spectrometry, beta-Crystallin A Chain
Show Abstract · Added April 3, 2018
Over time, the long-lived proteins that are present throughout the human body deteriorate. Typically, they become racemized, truncated, and covalently cross-linked. One reaction responsible for age-related protein cross-linking in the lens was elucidated recently and shown to involve spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine. Cys residues are another potential source of DHA, and evidence for this was found in many lens crystallins. In the human lens, some sites were more prone to forming non-disulfide covalent cross-links than others. Foremost among them was Cys5 in βA4 crystallin. The reason for this enhanced reactivity was investigated using peptides. Oxidation of Cys to cystine was a prerequisite for DHA formation, and DHA production was accelerated markedly by the presence of a Lys, one residue separated from Cys5. Modeling and direct investigation of the N-terminal sequence of βA4 crystallin, as well as a variety of homologous peptides, showed that the epsilon amino group of Lys can promote DHA production by nucleophilic attack on the alpha proton of cystine. Once a DHA residue was generated, it could form intermolecular cross-links with Lys and Cys. In the lens, the most abundant cross-link involved Cys5 of βA4 crystallin attached via a thioether bond to glutathione. These findings illustrate the potential of Cys and disulfide bonds to act as precursors for irreversible covalent cross-links and the role of nearby amino acids in creating 'hotpsots' for the spontaneous processes responsible for protein degradation in aged tissues.
© 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
0 Communities
1 Members
0 Resources
MeSH Terms
Imaging MS of Rodent Ocular Tissues and the Optic Nerve.
Anderson DMG, Lambert W, Calkins DJ, Ablonczy Z, Crouch RK, Caprioli RM, Schey KL
(2017) Methods Mol Biol 1618: 15-27
MeSH Terms: Animals, Eye, Optic Nerve, Rodentia, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Vision Disorders
Show Abstract · Added March 22, 2018
The visual system is comprised of many specialized cell types that are essential for relaying sensory information about an animal's surroundings to the brain. The cells present in ocular tissue are notoriously delicate, making it particularly challenging to section thin slices of unfixed tissue. Maintaining the morphology of the native tissue is crucial for accurate observations by either conventional staining techniques or in this instance matrix-assisted laser desorption ionization (MALDI IMS) or imaging using mass spectrometry. As vision loss is a significantly debilitating condition, studying molecular mechanisms involved in the process of vision loss is a critically important area of research.
0 Communities
2 Members
0 Resources
6 MeSH Terms
Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin.
Wang Z, Schey KL
(2017) Exp Eye Res 159: 23-29
MeSH Terms: Animals, Aquaporins, Binding Sites, Cattle, Cytoskeleton, Eye Proteins, Immunoblotting, Intermediate Filament Proteins, Lens, Crystalline, Mass Spectrometry, Models, Animal, Protein Binding
Show Abstract · Added May 6, 2017
An interaction between the C-terminus of aquaporin-0 (AQP0) and lens beaded filament protein filensin has been reported previously; however, the region of filensin that is involved in the interaction has not been determined. This study is designed to identify the region of filensin that interacts with AQP0. Chemical crosslinking coupled with mass spectrometry was used to identify the site of interaction. The protein complex was crosslinked with zero-length crosslinker: 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride (EDC). The crosslinked membrane fraction was digested by trypsin and crosslinked peptides were identified by liquid chromatography-tandem mass spectrometry. A crosslinked peptide between bovine filensin 450-465 (VKGPKEPEPPADLYTK) and bovine AQP0 239-259 (GSRPSESNGQPEVTGEPVELK) was detected. AQP0/filensin crosslinking was not detected in superficial young fiber cells, but increased with fiber cell age in the lens cortex. AQP0/filensin crosslinking and filensin truncation were observed in the same regions of the lens. This crosslinked peptide can be detected in 75 kDa gel band confirming that AQP0/filensin crosslinking can occur between AQP0 and the filensin C-terminal fragment. These results suggest that the AQP0 C-terminus directly interacts with the region of filensin that is adjacent to the major truncation site and the polybasic cluster of residues in the filensin C-terminal tail. This interaction occurs in a specific region of the lens and could only occur between AQP0 and filensin C-terminal fragment in vivo. This interaction supports the dual roles of filensin in the lens; roles that could be important during lens development.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
mGluR2 versus mGluR3 Metabotropic Glutamate Receptors in Primate Dorsolateral Prefrontal Cortex: Postsynaptic mGluR3 Strengthen Working Memory Networks.
Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AFT, Paspalas CD
(2018) Cereb Cortex 28: 974-987
MeSH Terms: Action Potentials, Animals, Dose-Response Relationship, Drug, Excitatory Amino Acid Agents, Eye Movements, Female, Image Processing, Computer-Assisted, Macaca mulatta, Magnetic Resonance Imaging, Male, Memory, Short-Term, Neurons, Post-Synaptic Density, Prefrontal Cortex, Rats, Receptors, Metabotropic Glutamate, Spatial Learning, Subcellular Fractions
Show Abstract · Added April 6, 2017
The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.
© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Loss of Axin2 Causes Ocular Defects During Mouse Eye Development.
Alldredge A, Fuhrmann S
(2016) Invest Ophthalmol Vis Sci 57: 5253-5262
MeSH Terms: Alleles, Animals, Axin Protein, Disease Models, Animal, Eye, Eye Diseases, Gene Expression Regulation, Developmental, Immunohistochemistry, Mice, Mice, Inbred C57BL, Mice, Knockout, Organogenesis, Polymerase Chain Reaction, Wnt Signaling Pathway
Show Abstract · Added April 18, 2017
Purpose - The scaffold protein Axin2 is an antagonist and universal target of the Wnt/β-catenin pathway. Disruption of Axin2 may lead to developmental eye defects; however, this has not been examined. The purpose of this study was to investigate the role of Axin2 during ocular and extraocular development in mouse.
Methods - Animals heterozygous and homozygous for a Axin2lacZ knock-in allele were analyzed at different developmental stages for reporter expression, morphology as well as for the presence of ocular and extraocular markers using histologic and immunohistochemical techniques.
Results - During early eye development, the Axin2lacZ reporter was expressed in the periocular mesenchyme, RPE, and optic stalk. In the developing retina, Axin2lacZ reporter expression was initiated in ganglion cells at late embryonic stages and robustly expressed in subpopulations of amacrine and horizontal cells postnatally. Activation of the Axin2lacZ reporter overlapped with labeling of POU4F1, PAX6, and Calbindin. Germline deletion of Axin2 led to variable ocular phenotypes ranging from normal to severely defective eyes exhibiting microphthalmia, coloboma, lens defects, and expanded ciliary margin. These defects were correlated with abnormal tissue patterning in individual affected tissues, such as the optic fissure margins in the ventral optic cup and in the expanded ciliary margin.
Conclusions - Our results reveal a critical role for Axin2 during ocular development, likely by restricting the activity of the Wnt/β-catenin pathway.
0 Communities
1 Members
0 Resources
14 MeSH Terms