Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 88

Publication Record


In vivo Raman spectral analysis of impaired cervical remodeling in a mouse model of delayed parturition.
O'Brien CM, Herington JL, Brown N, Pence IJ, Paria BC, Slaughter JC, Reese J, Mahadevan-Jansen A
(2017) Sci Rep 7: 6835
MeSH Terms: Animals, Cervix Uteri, Cyclooxygenase 1, Extracellular Matrix Proteins, Female, Lipid Metabolism, Membrane Proteins, Mice, Nucleic Acids, Spectrum Analysis, Raman, Term Birth, Uterine Contraction
Show Abstract · Added October 11, 2017
Monitoring cervical structure and composition during pregnancy has high potential for prediction of preterm birth (PTB), a problem affecting 15 million newborns annually. We use in vivo Raman spectroscopy, a label-free, light-based method that provides a molecular fingerprint to non-invasively investigate normal and impaired cervical remodeling. Prostaglandins stimulate uterine contractions and are clinically used for cervical ripening during pregnancy. Deletion of cyclooxygenase-1 (Cox-1), an enzyme involved in production of these prostaglandins, results in delayed parturition in mice. Contrary to expectation, Cox-1 null mice displayed normal uterine contractility; therefore, this study sought to determine whether cervical changes could explain the parturition differences in Cox-1 null mice and gestation-matched wild type (WT) controls. Raman spectral changes related to extracellular matrix proteins, lipids, and nucleic acids were tracked over pregnancy and found to be significantly delayed in Cox-1 null mice at term. A cervical basis for the parturition delay was confirmed by other ex vivo tests including decreased tissue distensibility, hydration, and elevated progesterone levels in the Cox-1 null mice at term. In conclusion, in vivo Raman spectroscopy non-invasively detected abnormal remodeling in the Cox-1 null mouse, and clearly demonstrated that the cervix plays a key role in their delayed parturition.
0 Communities
2 Members
0 Resources
12 MeSH Terms
The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness.
Bhave G, Colon S, Ferrell N
(2017) Am J Physiol Renal Physiol 313: F596-F602
MeSH Terms: Animals, Basement Membrane, Biomechanical Phenomena, Collagen Type IV, Cross-Linking Reagents, Elastic Modulus, Extracellular Matrix Proteins, Genotype, Imines, Kidney, Mice, Inbred C57BL, Mice, Knockout, Peroxidase, Phenotype, Protein Conformation, Tensile Strength
Show Abstract · Added December 7, 2017
Basement membranes (BMs), a specialized form of extracellular matrix, underlie nearly all cell layers and provide structural support for tissues and interact with cell surface receptors to determine cell behavior. Both macromolecular composition and stiffness of the BM influence cell-BM interactions. Collagen IV is a major constituent of the BM that forms an extensively cross-linked oligomeric network. Its deficiency leads to BM mechanical instability, as observed with glomerular BM in Alport syndrome. These findings have led to the hypothesis that collagen IV and its cross-links determine BM stiffness. A sulfilimine bond (S = N) between a methionine sulfur and a lysine nitrogen cross-links collagen IV and is formed by the matrix enzyme peroxidasin. In peroxidasin knockout mice with reduced collagen IV sulfilimine cross-links, we find a reduction in renal tubular BM stiffness. Thus this work provides the first direct experimental evidence that collagen IV sulfilimine cross-links contribute to BM mechanical properties and provides a foundation for future work on the relationship of BM mechanics to cell function in renal disease.
Copyright © 2017 the American Physiological Society.
1 Communities
0 Members
0 Resources
16 MeSH Terms
Embryo implantation triggers dynamic spatiotemporal expression of the basement membrane toolkit during uterine reprogramming.
Jones-Paris CR, Paria S, Berg T, Saus J, Bhave G, Paria BC, Hudson BG
(2017) Matrix Biol 57-58: 347-365
MeSH Terms: Animals, Basement Membrane, Collagen Type IV, Embryo Implantation, Extracellular Matrix Proteins, Female, Fluorescent Antibody Technique, Gene Expression Regulation, Injections, Laminin, Mice, Peptide Fragments, Peroxidase, Pregnancy, Protein-Serine-Threonine Kinases, RNA, Messenger, Sesame Oil, Uterus
Show Abstract · Added October 30, 2016
Basement membranes (BMs) are specialized extracellular scaffolds that influence behaviors of cells in epithelial, endothelial, muscle, nervous, and fat tissues. Throughout development and in response to injury or disease, BMs are fine-tuned with specific protein compositions, ultrastructure, and localization. These features are modulated through implements of the BM toolkit that is comprised of collagen IV, laminin, perlecan, and nidogen. Two additional proteins, peroxidasin and Goodpasture antigen-binding protein (GPBP), have recently emerged as potential members of the toolkit. In the present study, we sought to determine whether peroxidasin and GPBP undergo dynamic regulation in the assembly of uterine tissue BMs in early pregnancy as a tractable model for dynamic adult BMs. We explored these proteins in the context of collagen IV and laminin that are known to extensively change for decidualization. Electron microscopic analyses revealed: 1) a smooth continuous layer of BM in between the epithelial and stromal layers of the preimplantation endometrium; and 2) interrupted, uneven, and progressively thickened BM within the pericellular space of the postimplantation decidua. Quantification of mRNA levels by qPCR showed changes in expression levels that were complemented by immunofluorescence localization of peroxidasin, GPBP, collagen IV, and laminin. Novel BM-associated and subcellular spatiotemporal localization patterns of the four components suggest both collective pericellular functions and distinct functions in the uterus during reprogramming for embryo implantation.
Copyright © 2016 Elsevier B.V. All rights reserved.
1 Communities
1 Members
3 Resources
18 MeSH Terms
Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.
Wu J, Montaniel KR, Saleh MA, Xiao L, Chen W, Owens GK, Humphrey JD, Majesky MW, Paik DT, Hatzopoulos AK, Madhur MS, Harrison DG
(2016) Hypertension 67: 461-8
MeSH Terms: Animals, Aorta, Thoracic, Aortic Diseases, Cells, Cultured, Collagen, Disease Models, Animal, Extracellular Matrix Proteins, Fibroblasts, Fibrosis, Flow Cytometry, Hypertension, Immunohistochemistry, Male, Mice, Mice, Inbred C57BL, Muscle, Smooth, Vascular
Show Abstract · Added February 23, 2016
Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix.
© 2015 American Heart Association, Inc.
2 Communities
2 Members
0 Resources
16 MeSH Terms
Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix.
Gessel M, Spraggins JM, Voziyan P, Hudson BG, Caprioli RM
(2015) J Mass Spectrom 50: 1288-93
MeSH Terms: Amino Acid Sequence, Animals, Collagen, Extracellular Matrix, Extracellular Matrix Proteins, Freezing, Humans, Hydrolysis, Image Processing, Computer-Assisted, Mice, Molecular Sequence Data, Peptide Fragments, Rats, Sodium Dodecyl Sulfate, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tandem Mass Spectrometry
Show Abstract · Added November 3, 2015
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross-linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue.
Copyright © 2015 John Wiley & Sons, Ltd.
1 Communities
4 Members
1 Resources
16 MeSH Terms
The Ancient Immunoglobulin Domains of Peroxidasin Are Required to Form Sulfilimine Cross-links in Collagen IV.
Ero-Tolliver IA, Hudson BG, Bhave G
(2015) J Biol Chem 290: 21741-8
MeSH Terms: Collagen Type IV, Cross-Linking Reagents, Evolution, Molecular, Extracellular Matrix, Extracellular Matrix Proteins, HEK293 Cells, Heme, Humans, Imines, Immunoglobulins, Models, Biological, Peroxidase, Peroxidases, Protein Binding, Protein Structure, Tertiary
Show Abstract · Added August 12, 2015
The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
2 Members
1 Resources
15 MeSH Terms
KIM-1-mediated phagocytosis reduces acute injury to the kidney.
Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, Ichimura T, Kuchroo V, Bonventre JV
(2015) J Clin Invest 125: 1620-36
MeSH Terms: Acute Kidney Injury, Animals, Apoptosis, Cisplatin, Cytokines, Epithelial Cells, Extracellular Matrix Proteins, Gene Expression Regulation, Hepatitis A Virus Cellular Receptor 1, Homeodomain Proteins, Immunity, Innate, Inflammation, Intercellular Signaling Peptides and Proteins, Kidney, Kidney Tubules, Proximal, LLC-PK1 Cells, Macrophage Activation, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-kappa B, Phagocytosis, Phosphatidylinositol 3-Kinases, Protein Structure, Tertiary, Radiation Chimera, Reperfusion Injury, Swine
Show Abstract · Added September 12, 2016
Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain-dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1-mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1-mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.
1 Communities
1 Members
0 Resources
29 MeSH Terms
EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling.
Lu A, Zuo C, He Y, Chen G, Piao L, Zhang J, Xiao B, Shen Y, Tang J, Kong D, Alberti S, Chen D, Zuo S, Zhang Q, Yan S, Fei X, Yuan F, Zhou B, Duan S, Yu Y, Lazarus M, Su Y, Breyer RM, Funk CD, Yu Y
(2015) J Clin Invest 125: 1228-42
MeSH Terms: Animals, Cell Hypoxia, Cells, Cultured, Extracellular Matrix, Extracellular Matrix Proteins, Hypertension, Pulmonary, Male, Mice, Inbred C57BL, Mice, Knockout, Pulmonary Artery, Rats, Sprague-Dawley, Receptors, Prostaglandin E, EP3 Subtype, Signal Transduction, Sulfonamides, Transforming Growth Factor beta1, Vascular Remodeling, rho GTP-Binding Proteins
Show Abstract · Added February 6, 2016
Pulmonary arterial hypertension (PAH) is commonly associated with chronic hypoxemia in disorders such as chronic obstructive pulmonary disease (COPD). Prostacyclin analogs are widely used in the management of PAH patients; however, clinical efficacy and long-term tolerability of some prostacyclin analogs may be compromised by concomitant activation of the E-prostanoid 3 (EP3) receptor. Here, we found that EP3 expression is upregulated in pulmonary arterial smooth muscle cells (PASMCs) and human distal pulmonary arteries (PAs) in response to hypoxia. Either pharmacological inhibition of EP3 or Ep3 deletion attenuated both hypoxia and monocrotaline-induced pulmonary hypertension and restrained extracellular matrix accumulation in PAs in rodent models. In a murine PAH model, Ep3 deletion in SMCs, but not endothelial cells, retarded PA medial thickness. Knockdown of EP3α and EP3β, but not EP3γ, isoforms diminished hypoxia-induced TGF-β1 activation. Expression of either EP3α or EP3β in EP3-deficient PASMCs restored TGF-β1 activation in response to hypoxia. EP3α/β activation in PASMCs increased RhoA-dependent membrane type 1 extracellular matrix metalloproteinase (MMP) translocation to the cell surface, subsequently activating pro-MMP-2 and promoting TGF-β1 signaling. Activation or disruption of EP3 did not influence PASMC proliferation. Together, our results indicate that EP3 activation facilitates hypoxia-induced vascular remodeling and pulmonary hypertension in mice and suggest EP3 inhibition as a potential therapeutic strategy for pulmonary hypertension.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Structural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis.
Coles CH, Mitakidis N, Zhang P, Elegheert J, Lu W, Stoker AW, Nakagawa T, Craig AM, Jones EY, Aricescu AR
(2014) Nat Commun 5: 5209
MeSH Terms: Animals, Cell Differentiation, Chick Embryo, Coculture Techniques, Crystallization, Extracellular Matrix Proteins, Humans, Ligands, Mice, Neurogenesis, Neurons, Protein Binding, Protein Structure, Tertiary, Proteoglycans, Receptor, trkC, Receptor-Like Protein Tyrosine Phosphatases, Class 2, Signal Transduction, Synapses
Show Abstract · Added February 2, 2015
Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which reveal sufficient inter-domain flexibility in the RPTPσ extracellular region for interaction with both cis (same cell) and trans (opposite cell) ligands. Crystal structures of RPTPσ bound to its postsynaptic ligand TrkC detail an interaction surface partially overlapping the glycosaminoglycan-binding site. Accordingly, heparan sulphate and heparin oligomers compete with TrkC for RPTPσ binding in vitro and disrupt TrkC-dependent synaptic differentiation in neuronal co-culture assays. We propose that transient RPTPσ ectodomain emergence from the presynaptic proteoglycan layer allows capture by TrkC to form a trans-synaptic complex, the consequent reduction in RPTPσ flexibility potentiating interactions with additional ligands to orchestrate excitatory synapse formation.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells.
Miller CG, Pozzi A, Zent R, Schwarzbauer JE
(2014) Mol Biol Cell 25: 2342-50
MeSH Terms: Cells, Cultured, Collagen Type IV, Diabetic Nephropathies, Extracellular Matrix, Extracellular Matrix Proteins, Fibronectins, Glucose, Humans, Integrins, Mesangial Cells, Signal Transduction
Show Abstract · Added October 27, 2014
The filtration unit of the kidney is the glomerulus, a capillary network supported by mesangial cells and extracellular matrix (ECM). Glomerular function is compromised in diabetic nephropathy (DN) by uncontrolled buildup of ECM, especially type IV collagen, which progressively occludes the capillaries. Increased levels of the ECM protein fibronectin (FN) are also present; however, its role in DN is unknown. Mesangial cells cultured under high glucose conditions provide a model system for studying the effect of elevated glucose on deposition of FN and collagen IV. Imaging of mesangial cell cultures and analysis of detergent-insoluble matrix show that, under high glucose conditions, mesangial cells assembled significantly more FN matrix, independent of FN protein levels. High glucose conditions induced protein kinase C-dependent β1 integrin activation, and FN assembly in normal glucose was increased by stimulation of integrin activity with Mn(2+). Collagen IV incorporation into the matrix was also increased under high glucose conditions and colocalized with FN fibrils. An inhibitor of FN matrix assembly prevented collagen IV deposition, demonstrating dependence of collagen IV on FN matrix. We conclude that high glucose induces FN assembly, which contributes to collagen IV accumulation. Enhanced assembly of FN might facilitate dysregulated ECM accumulation in DN.
© 2014 Miller et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
1 Communities
2 Members
0 Resources
11 MeSH Terms