Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 38

Publication Record

Connections

Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes.
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE
(2019) Sci Signal 12:
MeSH Terms: Animals, Calcium, Exocytosis, GTP-Binding Protein alpha Subunits, Gi-Go, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Mice, Inbred C57BL, Mice, Inbred DBA, Mice, Knockout, Neural Inhibition, Phenotype, Protein Binding, Receptors, G-Protein-Coupled, Synaptic Transmission, Synaptosomal-Associated Protein 25
Show Abstract · Added February 22, 2019
G protein-coupled receptors (GPCRs) that couple to G proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABA receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT receptors and adrenergic α receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by G-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
1 Communities
3 Members
0 Resources
15 MeSH Terms
An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathoadrenal chromaffin cells.
Brindley RL, Bauer MB, Blakely RD, Currie KPM
(2016) Neuropharmacology 110: 438-448
MeSH Terms: Adrenal Glands, Animals, Calcium, Calcium Channels, N-Type, Cations, Divalent, Cells, Cultured, Chromaffin Cells, Exocytosis, Male, Membrane Potentials, Mice, Inbred C57BL, Mice, Knockout, Potassium Channels, Voltage-Gated, Receptors, Serotonin, Serotonin, Serotonin Agents, Serotonin Plasma Membrane Transport Proteins
Show Abstract · Added August 22, 2016
Adrenal chromaffin cells (ACCs), the neuroendocrine arm of the sympathetic nervous system, secrete catecholamines to mediate the physiological response to stress. Although ACCs do not synthesize 5-HT, they express the serotonin transporter (SERT). Genetic variations in SERT are linked to several CNS disorders but the role(s) of SERT/5-HT in ACCs has remained unclear. Adrenal glands from wild-type mice contained 5-HT at ≈ 750 fold lower abundance than adrenaline, and in SERT(-/-) mice this was reduced by ≈80% with no change in catecholamines. Carbon fibre amperometry showed that SERT modulated the ability of 5-HT1A receptors to inhibit exocytosis. 5-HT reduced the number of amperometric spikes (vesicular fusion events) evoked by KCl in SERT(-/-) cells and wild-type cells treated with escitalopram, a SERT antagonist. The 5-HT1A receptor antagonist WAY100635 blocked the inhibition by 5-HT which was mimicked by the 5-HT1A agonist 8-OH-DPAT but not the 5-HT1B agonist CP93129. There was no effect on voltage-gated Ca(2+) channels, K(+) channels, or intracellular [Ca(2+)] handling, showing the 5-HT receptors recruit an atypical inhibitory mechanism. Spike charge and kinetics were not altered by 5-HT receptors but were reduced in SERT(-/-) cells compared to wild-type cells. Our data reveal a novel role for SERT and suggest that adrenal chromaffin cells might be a previously unrecognized hub for serotonergic control of the sympathetic stress response.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity.
Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM, Vangoitsenhoven R, Papadopoulou AS, Tian L, Schonefeldt S, Serneels L, Deroose C, Staats KA, Van der Schueren B, De Strooper B, McGuinness OP, Mathieu C, Liston A
(2016) Diabetes 65: 53-61
MeSH Terms: Animals, Blood Glucose, Diabetes Mellitus, Type 2, Exocytosis, Homeostasis, Insulin, Insulin Resistance, Insulin-Secreting Cells, Liver, Mice, Mice, Knockout, MicroRNAs, Obesity, Phosphatidylinositol 3-Kinases
Show Abstract · Added March 28, 2016
The microRNA-29 (miR-29) family is among the most abundantly expressed microRNA in the pancreas and liver. Here, we investigated the function of miR-29 in glucose regulation using miR-29a/b-1 (miR-29a)-deficient mice and newly generated miR-29b-2/c (miR-29c)-deficient mice. We observed multiple independent functions of the miR-29 family, which can be segregated into a hierarchical physiologic regulation of glucose handling. miR-29a, and not miR-29c, was observed to be a positive regulator of insulin secretion in vivo, with dysregulation of the exocytotic machinery sensitizing β-cells to overt diabetes after unfolded protein stress. By contrast, in the liver both miR-29a and miR-29c were important negative regulators of insulin signaling via phosphatidylinositol 3-kinase regulation. Global or hepatic insufficiency of miR-29 potently inhibited obesity and prevented the onset of diet-induced insulin resistance. These results demonstrate strong regulatory functions for the miR-29 family in obesity and diabetes, culminating in a hierarchical and dose-dependent effect on premature lethality.
© 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles.
Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR
(2015) Mol Biol Cell 26: 4674-85
MeSH Terms: Adenosine Triphosphatases, Amino Acid Transport Systems, Basic, Calcium-Transporting ATPases, Cell Membrane, Exocytosis, Membrane Proteins, Mutation, Phosphatidylserines, Protein Transport, Proton-Translocating ATPases, Receptors, Steroid, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transport Vesicles, trans-Golgi Network
Show Abstract · Added April 6, 2017
Sorting of plasma membrane proteins into exocytic vesicles at the yeast trans-Golgi network (TGN) is believed to be mediated by their coalescence with specific lipids, but how these membrane-remodeling events are regulated is poorly understood. Here we show that the ATP-dependent phospholipid flippase Drs2 is required for efficient segregation of cargo into exocytic vesicles. The plasma membrane proteins Pma1 and Can1 are missorted from the TGN to the vacuole in drs2∆ cells. We also used a combination of flippase mutants that either gain or lose the ability to flip phosphatidylserine (PS) to determine that PS flip by Drs2 is its critical function in this sorting event. The primary role of PS flip at the TGN appears to be to control the oxysterol-binding protein homologue Kes1/Osh4 and regulate ergosterol subcellular distribution. Deletion of KES1 suppresses plasma membrane-missorting defects and the accumulation of intracellular ergosterol in drs2 mutants. We propose that PS flip is part of a homeostatic mechanism that controls sterol loading and lateral segregation of protein and lipid domains at the TGN.
© 2015 Hankins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
15 MeSH Terms
Exosome secretion is enhanced by invadopodia and drives invasive behavior.
Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM
(2013) Cell Rep 5: 1159-68
MeSH Terms: Actins, Cell Line, Tumor, Cell Movement, Exocytosis, Exosomes, Humans, Pseudopodia, Secretory Pathway, Tetraspanin 30, rab GTP-Binding Proteins, rab27 GTP-Binding Proteins
Show Abstract · Added March 20, 2014
Unconventional secretion of exosome vesicles from multivesicular endosomes (MVEs) occurs across a broad set of systems and is reported to be upregulated in cancer, where it promotes aggressive behavior. However, regulatory control of exosome secretion is poorly understood. Using cancer cells, we identified specialized invasive actin structures called invadopodia as specific and critical docking and secretion sites for CD63- and Rab27a-positive MVEs. Thus, inhibition of invadopodia formation greatly reduced exosome secretion into conditioned media. Functionally, addition of purified exosomes or inhibition of exosome biogenesis or secretion greatly affected multiple invadopodia life cycle steps, including invadopodia formation, stabilization, and exocytosis of proteinases, indicating a key role for exosome cargoes in promoting invasive activity and providing in situ signaling feedback. Exosome secretion also controlled cellular invasion through three-dimensional matrix. These data identify a synergistic interaction between invadopodia biogenesis and exosome secretion and reveal a fundamental role for exosomes in promoting cancer cell invasiveness.
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
3 Communities
2 Members
0 Resources
11 MeSH Terms
Signaling inputs to invadopodia and podosomes.
Hoshino D, Branch KM, Weaver AM
(2013) J Cell Sci 126: 2979-89
MeSH Terms: Actins, Animals, Cell Adhesion Molecules, Cell Movement, Cellular Microenvironment, Exocytosis, Extracellular Matrix, Humans, Intercellular Signaling Peptides and Proteins, Neoplasm Invasiveness, Phosphatidylinositol 3-Kinases, Pseudopodia, Signal Transduction
Show Abstract · Added March 7, 2014
Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.
1 Communities
1 Members
0 Resources
13 MeSH Terms
miR-153 regulates SNAP-25, synaptic transmission, and neuronal development.
Wei C, Thatcher EJ, Olena AF, Cha DJ, Perdigoto AL, Marshall AF, Carter BD, Broadie K, Patton JG
(2013) PLoS One 8: e57080
MeSH Terms: Animals, Base Sequence, Exocytosis, Green Fluorescent Proteins, MicroRNAs, Motor Neurons, Sequence Homology, Amino Acid, Signal Transduction, Synaptic Transmission, Synaptosomal-Associated Protein 25, Zebrafish
Show Abstract · Added March 5, 2014
SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation controlling motor neuron development, neurosecretion, synaptic activity, and movement in zebrafish. Loss of miR-153 causes overexpression of SNAP-25 and consequent hyperactive movement in early zebrafish embryos. Conversely, overexpression of miR-153 causes SNAP-25 down regulation resulting in near complete paralysis, mimicking the effects of treatment with Botulinum neurotoxin. miR-153-dependent changes in synaptic activity at the neuromuscular junction are consistent with the observed movement defects. Underlying the movement defects, perturbation of miR-153 function causes dramatic developmental changes in motor neuron patterning and branching. Together, our results indicate that precise control of SNAP-25 expression by miR-153 is critically important for proper neuronal patterning as well as neurotransmission.
1 Communities
3 Members
0 Resources
11 MeSH Terms
A Rab11a-Rab8a-Myo5B network promotes stretch-regulated exocytosis in bladder umbrella cells.
Khandelwal P, Prakasam HS, Clayton DR, Ruiz WG, Gallo LI, van Roekel D, Lukianov S, Peränen J, Goldenring JR, Apodaca G
(2013) Mol Biol Cell 24: 1007-19
MeSH Terms: Actin Cytoskeleton, Animals, Exocytosis, Female, Green Fluorescent Proteins, Human Growth Hormone, Humans, Microscopy, Confocal, Microscopy, Electron, Myosins, Rats, Rats, Sprague-Dawley, Signal Transduction, Stress, Mechanical, Urinary Bladder, rab GTP-Binding Proteins
Show Abstract · Added September 3, 2013
Multiple Rabs are associated with secretory granules/vesicles, but how these GTPases are coordinated to promote regulated exocytosis is not well understood. In bladder umbrella cells a subapical pool of discoidal/fusiform-shaped vesicles (DFVs) undergoes Rab11a-dependent regulated exocytosis in response to bladder filling. We show that Rab11a-associated vesicles are enmeshed in an apical cytokeratin meshwork and that Rab11a likely acts upstream of Rab8a to promote exocytosis. Surprisingly, expression of Rabin8, a previously described Rab11a effector and guanine nucleotide exchange factor for Rab8, stimulates stretch-induced exocytosis in a manner that is independent of its catalytic activity. Additional studies demonstrate that the unconventional motor protein myosin5B motor (Myo5B) works in association with the Rab8a-Rab11a module to promote exocytosis, possibly by ensuring transit of DFVs through a subapical, cortical actin cytoskeleton before fusion. Our results indicate that Rab11a, Rab8a, and Myo5B function as part of a network to promote stretch-induced exocytosis, and we predict that similarly organized Rab networks will be common to other regulated secretory pathways.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Gβγ inhibits exocytosis via interaction with critical residues on soluble N-ethylmaleimide-sensitive factor attachment protein-25.
Wells CA, Zurawski Z, Betke KM, Yim YY, Hyde K, Rodriguez S, Alford S, Hamm HE
(2012) Mol Pharmacol 82: 1136-49
MeSH Terms: Alanine, Animals, Binding Sites, Botulinum Toxins, Calcium, Cell Line, Exocytosis, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Lampreys, Mutation, Neurons, Peptides, Protein Binding, Protein Interaction Domains and Motifs, Recombinant Fusion Proteins, SNARE Proteins, Sf9 Cells, Spodoptera, Synaptosomal-Associated Protein 25, Synaptotagmin I, Syntaxin 1
Show Abstract · Added December 10, 2013
Spatial and temporal regulation of neurotransmitter release is a complex process accomplished by the exocytotic machinery working in tandem with numerous regulatory proteins. G-protein βγ dimers regulate the core process of exocytosis by interacting with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins soluble N-ethylmaleimide-sensitive factor attachment protein-25 (SNAP-25), syntaxin 1A, and synaptobrevin. Gβγ binding to ternary SNAREs overlaps with calcium-dependent binding of synaptotagmin, inhibiting synaptotagmin-1 binding and fusion of the synaptic vesicle. To further explore the binding sites of Gβγ on SNAP-25, peptides based on the sequence of SNAP-25 were screened for Gβγ binding. Peptides that bound Gβγ were subjected to alanine scanning mutagenesis to determine their relevance to the Gβγ-SNAP-25 interaction. Peptides from this screen were tested in protein-protein interaction assays for their ability to modulate the interaction of Gβγ with SNAP-25. A peptide from the C terminus, residues 193 to 206, significantly inhibited the interaction. In addition, Ala mutants of SNAP-25 residues from the C terminus of SNAP-25, as well as from the amino-terminal region decreased binding to Gβ₁γ₁. When SNAP-25 with eight residues mutated to alanine was assembled with syntaxin 1A, there was significantly reduced affinity of this mutated t-SNARE for Gβγ, but it still interacted with synaptotagmin-1 in a Ca²⁺ -dependent manner and reconstituted evoked exocytosis in botulinum neurotoxin E-treated neurons. However, the mutant SNAP-25 could no longer support 5-hydroxytryptamine-mediated inhibition of exocytosis.
0 Communities
1 Members
0 Resources
22 MeSH Terms
The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions.
Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM
(2012) J Immunol 189: 2824-32
MeSH Terms: Animals, Cell Line, Tumor, Exocytosis, Female, G-Protein-Coupled Receptor Kinase 2, G-Protein-Coupled Receptor Kinases, Humans, Interleukin-8, Leukemia, Basophilic, Acute, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neovascularization, Physiologic, Neutrophils, Phosphorylation, Rats, Receptors, Interleukin-8A, Receptors, Interleukin-8B, Signal Transduction
Show Abstract · Added May 31, 2013
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.
2 Communities
1 Members
0 Resources
20 MeSH Terms