Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 14

Publication Record

Connections

The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity.
Burmeister MA, Brown JD, Ayala JE, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE
(2017) Am J Physiol Endocrinol Metab 313: E651-E662
MeSH Terms: Acetyl-CoA Carboxylase, Adenylate Kinase, Animals, Body Composition, CHO Cells, Cricetulus, Dose-Response Relationship, Drug, Eating, Exenatide, Food, Glucagon-Like Peptide-1 Receptor, Glycolysis, Homeostasis, Male, Mice, Mice, Inbred C57BL, Peptides, Sensation, TOR Serine-Threonine Kinases, Venoms, Ventromedial Hypothalamic Nucleus
Show Abstract · Added October 23, 2017
Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis.
Copyright © 2017 the American Physiological Society.
0 Communities
1 Members
0 Resources
21 MeSH Terms
The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice.
Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE
(2017) Diabetes 66: 372-384
MeSH Terms: Animals, Body Composition, Diet, High-Fat, Eating, Energy Metabolism, Exenatide, Gene Knockdown Techniques, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Glucose, Glucose Tolerance Test, Homeostasis, Hypothalamus, Incretins, Liraglutide, Male, Mice, Neurons, Paraventricular Hypothalamic Nucleus, Peptides, Pro-Opiomelanocortin, Venoms, Weight Gain
Show Abstract · Added October 23, 2017
Pharmacological activation of the hypothalamic glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) promotes weight loss and improves glucose tolerance. This demonstrates that the hypothalamic GLP-1R is sufficient but does not show whether it is necessary for the effects of exogenous GLP-1R agonists (GLP-1RA) or endogenous GLP-1 on these parameters. To address this, we crossed mice harboring floxed Glp1r alleles to mice expressing Nkx2.1-Cre to knock down Glp1r expression throughout the hypothalamus (GLP-1RKD). We also generated mice lacking Glp1r expression specifically in two GLP-1RA-responsive hypothalamic feeding nuclei/cell types, the paraventricular nucleus (GLP-1RKD) and proopiomelanocortin neurons (GLP-1RKD). Chow-fed GLP-1RKD mice exhibited increased food intake and energy expenditure with no net effect on body weight. When fed a high-fat diet, these mice exhibited normal food intake but elevated energy expenditure, yielding reduced weight gain. None of these phenotypes were observed in GLP-1RKD and GLP-1RKD mice. The acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA exendin-4 and liraglutide were preserved in all mouse lines. Chronic liraglutide treatment reduced body weight in chow-fed GLP-1RKD mice, but this effect was attenuated with high-fat diet feeding. In sum, classic homeostatic control regions are sufficient but not individually necessary for the effects of GLP-1RA on nutrient homeostasis.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration.
Aamodt KI, Aramandla R, Brown JJ, Fiaschi-Taesch N, Wang P, Stewart AF, Brissova M, Powers AC
(2016) Am J Physiol Endocrinol Metab 311: E859-E868
MeSH Terms: Activins, Adenosine, Adenosine A2 Receptor Agonists, Adenosine-5'-(N-ethylcarboxamide), Adult, Automation, Cell Culture Techniques, Cell Proliferation, Drug Evaluation, Preclinical, Erythropoietin, Exenatide, Female, GABA Agents, Harmine, Humans, Incretins, Insulin-Secreting Cells, Male, Middle Aged, Monoamine Oxidase Inhibitors, Myostatin, Nucleosides, Peptides, Platelet-Derived Growth Factor, Prolactin, Regeneration, Serotonin, Serotonin Receptor Agonists, Vasodilator Agents, Venoms, Young Adult, gamma-Aminobutyric Acid
Show Abstract · Added April 26, 2017
Numerous compounds stimulate rodent β-cell proliferation; however, translating these findings to human β-cells remains a challenge. To examine human β-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human β-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled β-cells with high specificity using both nuclear and cytoplasmic markers. β-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1β signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67 β-cells, whereas treatment with other compounds had limited to no effect on human β-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human β-cell proliferation, thus allowing for increased testing of candidate human β-cell mitogens.
0 Communities
2 Members
0 Resources
32 MeSH Terms
Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.
Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A
(2016) Transl Psychiatry 6: e809
MeSH Terms: Animals, Arachidonic Acid, Arachidonic Acids, Cocaine, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Endocannabinoids, Exenatide, Glucagon-Like Peptide-1 Receptor, Glycerides, Homeostasis, Incretins, Mice, Microdialysis, Peptides, Proto-Oncogene Proteins c-fos, Septal Nuclei, Venoms
Show Abstract · Added April 6, 2017
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Discovery of (S)-2-cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-pyrrido[3,4-b]indole-4-carboxamide (VU0453379): a novel, CNS penetrant glucagon-like peptide 1 receptor (GLP-1R) positive allosteric modulator (PAM).
Morris LC, Nance KD, Gentry PR, Days EL, Weaver CD, Niswender CM, Thompson AD, Jones CK, Locuson CW, Morrison RD, Daniels JS, Niswender KD, Lindsley CW
(2014) J Med Chem 57: 10192-7
MeSH Terms: Allosteric Regulation, Animals, Catalepsy, Central Nervous System Agents, Drug Synergism, Exenatide, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Haloperidol, High-Throughput Screening Assays, Indoles, Insulin, Insulin Secretion, Islets of Langerhans, Male, Mice, Inbred C57BL, Microsomes, Liver, Peptides, Pyrrolidines, Receptors, Glucagon, Structure-Activity Relationship, Venoms
Show Abstract · Added February 16, 2015
A duplexed, functional multiaddition high throughput screen and subsequent iterative parallel synthesis effort identified the first highly selective and CNS penetrant glucagon-like peptide-1R (GLP-1R) positive allosteric modulator (PAM). PAM (S)-9b potentiated low-dose exenatide to augment insulin secretion in primary mouse pancreatic islets, and (S)-9b alone was effective in potentiating endogenous GLP-1R to reverse haloperidol-induced catalepsy.
0 Communities
2 Members
0 Resources
22 MeSH Terms
A Duplexed High-Throughput Screen to Identify Allosteric Modulators of the Glucagon-Like Peptide 1 and Glucagon Receptors.
Morris LC, Days EL, Turney M, Mi D, Lindsley CW, Weaver CD, Niswender KD
(2014) J Biomol Screen 19: 847-58
MeSH Terms: Allosteric Regulation, Allosteric Site, Animals, Binding Sites, CHO Cells, Calcium, Cell Line, Cell Line, Tumor, Cricetinae, Cricetulus, Cyclic AMP, Disease Progression, Exenatide, Glucagon-Like Peptide 1, Glucose, High-Throughput Screening Assays, Humans, Liraglutide, Peptides, Receptors, Glucagon, Recombinant Proteins, Signal Transduction, Venoms
Show Abstract · Added August 14, 2014
Injectable, degradation-resistant peptide agonists for the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R), such as exenatide and liraglutide, activate the GLP-1R via a complex orthosteric-binding site and are effective therapeutics for glycemic control in type 2 diabetes. Orally bioavailable orthosteric small-molecule agonists are unlikely to be developed, whereas positive allosteric modulators (PAMs) may offer an improved therapeutic profile. We hypothesize that allosteric modulators of the GLP-1R would increase the potency and efficacy of native GLP-1 in a spatial and temporally preserved manner and/or may improve efficacy or side effects of injectable analogs. We report the design, optimization, and initial results of a duplexed high-throughput screen in which cell lines overexpressing either the GLP-1R or the glucagon receptor were coplated, loaded with a calcium-sensitive dye, and probed in a three-phase assay to identify agonists, antagonists, and potentiators of GLP-1, and potentiators of glucagon. 175,000 compounds were initially screened, and progression through secondary assays yielded 98 compounds with a variety of activities at the GLP-1R. Here, we describe five compounds possessing different patterns of modulation of the GLP-1R. These data uncover PAMs that may offer a drug-development pathway to enhancing in vivo efficacy of both endogenous GLP-1 and peptide analogs.
© 2014 Society for Laboratory Automation and Screening.
0 Communities
3 Members
0 Resources
23 MeSH Terms
Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection.
Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E
(2013) J Am Soc Nephrol 24: 2034-43
MeSH Terms: Acute Kidney Injury, Animals, Antineoplastic Agents, Apoptosis, Cisplatin, Dipeptidyl-Peptidase IV Inhibitors, Exenatide, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Hypoglycemic Agents, Intestinal Mucosa, Male, Mice, Mice, Inbred C57BL, Oxidative Stress, Peptides, Piperidines, RNA, Small Interfering, Receptors, Glucagon, Reperfusion Injury, Uracil, Venoms
Show Abstract · Added February 11, 2016
Accumulating evidence of the beyond-glucose lowering effects of a gut-released hormone, glucagon-like peptide-1 (GLP-1), has been reported in the context of remote organ connections of the cardiovascular system. Specifically, GLP-1 appears to prevent apoptosis, and inhibition of dipeptidyl peptidase-4 (DPP-4), which cleaves GLP-1, is renoprotective in rodent ischemia-reperfusion injury models. Whether this renoprotection involves enhanced GLP-1 signaling is unclear, however, because DPP-4 cleaves other molecules as well. Thus, we investigated whether modulation of GLP-1 signaling attenuates cisplatin (CP)-induced AKI. Mice injected with 15 mg/kg CP had increased BUN and serum creatinine and CP caused remarkable pathologic renal injury, including tubular necrosis. Apoptosis was also detected in the tubular epithelial cells of CP-treated mice using immunoassays for single-stranded DNA and activated caspase-3. Treatment with a DPP-4 inhibitor, alogliptin (AG), significantly reduced CP-induced renal injury and reduced the renal mRNA expression ratios of Bax/Bcl-2 and Bim/Bcl-2. AG treatment increased the blood levels of GLP-1, but reversed the CP-induced increase in the levels of other DPP-4 substrates such as stromal cell-derived factor-1 and neuropeptide Y. Furthermore, the GLP-1 receptor agonist exendin-4 reduced CP-induced renal injury and apoptosis, and suppression of renal GLP-1 receptor expression in vivo by small interfering RNA reversed the renoprotective effects of AG. These data suggest that enhancing GLP-1 signaling ameliorates CP-induced AKI via antiapoptotic effects and that this gut-kidney axis could be a new therapeutic target in AKI.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Effects of intraportal exenatide on hepatic glucose metabolism in the conscious dog.
Edgerton DS, An Z, Johnson KM, Farmer T, Farmer B, Neal D, Cherrington AD
(2013) Am J Physiol Endocrinol Metab 305: E132-9
MeSH Terms: Animals, Consciousness, Dogs, Exenatide, Female, Glucose, Hyperglycemia, Hypoglycemic Agents, Infusions, Intravenous, Insulin, Lactic Acid, Liver, Male, Peptides, Portal Vein, Venoms
Show Abstract · Added July 21, 2014
Incretins improve glucose metabolism through multiple mechanisms. It remains unclear whether direct hepatic effects are an important part of exenatide's (Ex-4) acute action. Therefore, the objective of this study was to determine the effect of intraportal delivery of Ex-4 on hepatic glucose production and uptake. Fasted conscious dogs were studied during a hyperglycemic clamp in which glucose was infused into the hepatic portal vein. At the same time, portal saline (control; n = 8) or exenatide was infused at low (0.3 pmol·kg⁻¹·min⁻¹, Ex-4-low; n = 5) or high (0.9 pmol·kg⁻¹·min⁻¹, Ex-4-high; n = 8) rates. Arterial plasma glucose levels were maintained at 160 mg/dl during the experimental period. This required a greater rate of glucose infusion in the Ex-4-high group (1.5 ± 0.4, 2.0 ± 0.7, and 3.7 ± 0.7 mg·kg⁻¹·min⁻¹ between 30 and 240 min in the control, Ex-4-low, and Ex-4-high groups, respectively). Plasma insulin levels were elevated by Ex-4 (arterial: 4,745 ± 428, 5,710 ± 355, and 7,262 ± 1,053 μU/ml; hepatic sinusoidal: 14,679 ± 1,700, 15,341 ± 2,208, and 20,445 ± 4,020 μU/ml, 240 min, area under the curve), whereas the suppression of glucagon was nearly maximal in all groups. Although glucose utilization was greater during Ex-4 infusion (5.92 ± 0.53, 6.41 ± 0.57, and 8.12 ± 0.54 mg·kg⁻¹·min⁻¹), when indices of hepatic, muscle, and whole body glucose uptake were expressed relative to circulating insulin concentrations, there was no indication of insulin-independent effects of Ex-4. Thus, this study does not support the notion that Ex-4 generates acute changes in hepatic glucose metabolism through direct effects on the liver.
1 Communities
4 Members
1 Resources
16 MeSH Terms
β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion.
Kaihara KA, Dickson LM, Jacobson DA, Tamarina N, Roe MW, Philipson LH, Wicksteed B
(2013) Diabetes 62: 1527-36
MeSH Terms: Animals, Crosses, Genetic, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Enzyme Induction, Exenatide, Glucose Clamp Technique, Hyperglycemia, Hypoglycemic Agents, Insulin, Insulin Secretion, Insulin-Secreting Cells, Kinetics, Mice, Mutant Proteins, Patch-Clamp Techniques, Peptides, Phosphorylation, Protein Processing, Post-Translational, Protein Subunits, Second Messenger Systems, Up-Regulation, Venoms
Show Abstract · Added February 12, 2015
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Evolution of exenatide as a diabetes therapeutic.
Bhavsar S, Mudaliar S, Cherrington A
(2013) Curr Diabetes Rev 9: 161-93
MeSH Terms: Animals, Blood Glucose, Cardiovascular Diseases, Diabetes Mellitus, Type 2, Diabetic Angiopathies, Drug Therapy, Combination, Exenatide, Glucagon-Like Peptide 1, Glycated Hemoglobin A, Humans, Hypoglycemic Agents, Metformin, Mice, Mice, Knockout, Models, Animal, Nausea, Peptides, Sulfonylurea Compounds, Thiazolidinediones, Venoms, Weight Loss
Show Abstract · Added February 13, 2015
Type 2 diabetes (T2DM) is a disease of epidemic proportion associated with significant morbidity and excess mortality. Optimal glucose control reduces the risk of microvascular and possibly macrovascular complications due to diabetes. However, glycemic control is rarely optimal and several therapeutic interventions for the treatment of diabetes cause hypoglycemia and weight gain; some may exacerbate cardiovascular risk. Exenatide (synthetic exendin-4) is a glucagon- like peptide-1 receptor (GLP-1R) agonist developed as a first-in-class diabetes therapy. This review presents an overview of the evolution of exenatide as a T2DM treatment, beginning with the seminal preclinical discoveries and continuing through to clinical pharmacology investigations and phase 3 clinical trials. In patients with T2DM, exenatide enhanced glucose-dependent insulin secretion, suppressed inappropriately elevated glucagon secretion, slowed gastric emptying, and enhanced satiety. In controlled phase 3 clinical trials ranging from 12 to 52 weeks, 10-mcg exenatide twice daily (ExBID) reduced mean HbA1c by -0.8% to -1.7% as monotherapy or in combination with metformin (MET), sulfonylureas (SFU), and/or thiazolidinediones (TZD); with mean weight losses of -1.2 kg to -8.0 kg. In controlled phase 3 trials ranging from 24 to 30 weeks, a 2-mg once-weekly exenatide formulation (ExQW) reduced mean HbA1c by -1.3% to -1.9%, with mean weight reductions of -2.3 to -3.7 kg. Exenatide was generally well-tolerated. The most common side effects were gastrointestinal in nature, mild, and transient. Nausea was the most prevalent adverse event. The incidence of hypoglycemia was generally low. By building upon early observations exenatide was successfully developed into an effective diabetes therapy.
0 Communities
1 Members
0 Resources
21 MeSH Terms