Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 186

Publication Record

Connections

The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins.
Ely ZA, Moon JM, Sliwoski GR, Sangha AK, Shen XX, Labella AL, Meiler J, Capra JA, Rokas A
(2019) Genome Biol Evol 11: 2574-2592
MeSH Terms: Animals, Biological Evolution, Eutheria, Evolution, Molecular, Female, Galectins, Haplotypes, Humans, Models, Molecular, Phylogeny, Placenta, Polymorphism, Single Nucleotide, Pregnancy, Selection, Genetic
Show Abstract · Added March 3, 2020
Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development. To comprehensively study the molecular evolution of these galectins, both across mammals and within humans, we conducted a series of between- and within-species evolutionary analyses. By examining patterns of sequence evolution between species, we found that primate-specific galectins showed uniformly high substitution rates, whereas two of the four other galectins experienced accelerated evolution in primates. By examining human population genomic variation, we found that galectin genes and variants, including variants previously linked to immune diseases, showed signatures of recent positive selection in specific human populations. By examining one nonsynonymous variant in Galectin-8 previously associated with autoimmune diseases, we further discovered that it is tightly linked to three other nonsynonymous variants; surprisingly, the global frequency of this four-variant haplotype is ∼50%. To begin understanding the impact of this major haplotype on Galectin-8 protein structure, we modeled its 3D protein structure and found that it differed substantially from the reference protein structure. These results suggest that placentally expressed galectins experienced both ancient and more recent selection in a lineage- and population-specific manner. Furthermore, our discovery that the major Galectin-8 haplotype is structurally distinct from and more commonly found than the reference haplotype illustrates the significance of understanding the evolutionary processes that sculpted variants associated with human genetic disease.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Genome-wide enhancer annotations differ significantly in genomic distribution, evolution, and function.
Benton ML, Talipineni SC, Kostka D, Capra JA
(2019) BMC Genomics 20: 511
MeSH Terms: Cell Line, Databases, Genetic, Enhancer Elements, Genetic, Evolution, Molecular, Gene Expression Regulation, Genomics, Humans, Liver, Molecular Sequence Annotation, Myocardium
Show Abstract · Added March 3, 2020
BACKGROUND - Non-coding gene regulatory enhancers are essential to transcription in mammalian cells. As a result, a large variety of experimental and computational strategies have been developed to identify cis-regulatory enhancer sequences. Given the differences in the biological signals assayed, some variation in the enhancers identified by different methods is expected; however, the concordance of enhancers identified by different methods has not been comprehensively evaluated. This is critically needed, since in practice, most studies consider enhancers identified by only a single method. Here, we compare enhancer sets from eleven representative strategies in four biological contexts.
RESULTS - All sets we evaluated overlap significantly more than expected by chance; however, there is significant dissimilarity in their genomic, evolutionary, and functional characteristics, both at the element and base-pair level, within each context. The disagreement is sufficient to influence interpretation of candidate SNPs from GWAS studies, and to lead to disparate conclusions about enhancer and disease mechanisms. Most regions identified as enhancers are supported by only one method, and we find limited evidence that regions identified by multiple methods are better candidates than those identified by a single method. As a result, we cannot recommend the use of any single enhancer identification strategy in all settings.
CONCLUSIONS - Our results highlight the inherent complexity of enhancer biology and identify an important challenge to mapping the genetic architecture of complex disease. Greater appreciation of how the diverse enhancer identification strategies in use today relate to the dynamic activity of gene regulatory regions is needed to enable robust and reproducible results.
0 Communities
1 Members
0 Resources
MeSH Terms
Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues.
Moon JM, Capra JA, Abbot P, Rokas A
(2019) G3 (Bethesda) 9: 2761-2774
MeSH Terms: DNA Transposable Elements, Databases, Genetic, Enhancer Elements, Genetic, Evolution, Molecular, Genome-Wide Association Study, Genomics, Humans, Immunity, Organ Specificity, Quantitative Trait, Heritable, Selection, Genetic
Show Abstract · Added March 3, 2020
Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima's , , H12, ) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions' shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.
Copyright © 2019 Moon et al.
0 Communities
1 Members
0 Resources
MeSH Terms
Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts.
Steenwyk JL, Opulente DA, Kominek J, Shen XX, Zhou X, Labella AL, Bradley NP, Eichman BF, Čadež N, Libkind D, DeVirgilio J, Hulfachor AB, Kurtzman CP, Hittinger CT, Rokas A
(2019) PLoS Biol 17: e3000255
MeSH Terms: Base Sequence, Cell Cycle, DNA Damage, DNA Repair, Evolution, Molecular, Genes, Fungal, Phenotype, Phylogeny, Saccharomycetales
Show Abstract · Added August 26, 2019
Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway.
Neitzel LR, Spencer ZT, Nayak A, Cselenyi CS, Benchabane H, Youngblood CQ, Zouaoui A, Ng V, Stephens L, Hann T, Patton JG, Robbins D, Ahmed Y, Lee E
(2019) Mech Dev 156: 20-31
MeSH Terms: Animals, Body Patterning, Drosophila, Embryonic Development, Evolution, Molecular, Gene Expression Regulation, Developmental, Glycosylation, Humans, Phosphotransferases (Alcohol Group Acceptor), Wnt Signaling Pathway, Xenopus laevis, Zebrafish
Show Abstract · Added April 10, 2019
In a screen for human kinases that regulate Xenopus laevis embryogenesis, we identified Nagk and other components of the UDP-GlcNAc glycosylation salvage pathway as regulators of anteroposterior patterning and Wnt signaling. We find that the salvage pathway does not affect other major embryonic signaling pathways (Fgf, TGFβ, Notch, or Shh), thereby demonstrating specificity for Wnt signaling. We show that the role of the salvage pathway in Wnt signaling is evolutionarily conserved in zebrafish and Drosophila. Finally, we show that GlcNAc is essential for the growth of intestinal enteroids, which are highly dependent on Wnt signaling for growth and maintenance. We propose that the Wnt pathway is sensitive to alterations in the glycosylation state of a cell and acts as a nutritional sensor in order to couple growth/proliferation with its metabolic status. We also propose that the clinical manifestations observed in congenital disorders of glycosylation (CDG) in humans may be due, in part, to their effects on Wnt signaling during development.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus.
Choby JE, Buechi HB, Farrand AJ, Skaar EP, Barber MF
(2018) mBio 9:
MeSH Terms: Animals, Cation Transport Proteins, Evolution, Molecular, Hemoglobins, Host-Pathogen Interactions, Iron, Mutation, Primates, Protein Binding, Species Specificity, Staphylococcus aureus
Show Abstract · Added April 7, 2019
Metals are a limiting resource for pathogenic bacteria and must be scavenged from host proteins. Hemoglobin provides the most abundant source of iron in the human body and is required by several pathogens to cause invasive disease. However, the consequences of hemoglobin evolution for bacterial nutrient acquisition remain unclear. Here we show that the α- and β-globin genes exhibit strikingly parallel signatures of adaptive evolution across simian primates. Rapidly evolving sites in hemoglobin correspond to binding interfaces of IsdB, a bacterial hemoglobin receptor harbored by pathogenic Using an evolution-guided experimental approach, we demonstrate that the divergence between primates and staphylococcal isolates governs hemoglobin recognition and bacterial growth. The reintroduction of putative adaptive mutations in α- or β-globin proteins was sufficient to impair binding, providing a mechanism for the evolution of disease resistance. These findings suggest that bacterial hemoprotein capture has driven repeated evolutionary conflicts with hemoglobin during primate descent. During infection, bacteria must steal metals, including iron, from the host tissue. Therefore, pathogenic bacteria have evolved metal acquisition systems to overcome the elaborate processes mammals use to withhold metal from pathogens. uses IsdB, a hemoglobin receptor, to thieve iron-containing heme from hemoglobin within human blood. We find evidence that primate hemoglobin has undergone rapid evolution at protein surfaces contacted by IsdB. Additionally, variation in the hemoglobin sequences among primates, or variation in IsdB of related staphylococci, reduces bacterial hemoglobin capture. Together, these data suggest that has evolved to recognize human hemoglobin in the face of rapid evolution at the IsdB binding interface, consistent with repeated evolutionary conflicts in the battle for iron during host-pathogen interactions.
Copyright © 2018 Choby et al.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Unicellular ancestry and mechanisms of diversification of Goodpasture antigen-binding protein.
Darris C, Revert F, Revert-Ros F, Gozalbo-Rovira R, Feigley A, Fidler A, Lopez-Pascual E, Saus J, Hudson BG
(2019) J Biol Chem 294: 759-769
MeSH Terms: Basement Membrane, Evolution, Molecular, Humans, Isoenzymes, Protein-Serine-Threonine Kinases
Show Abstract · Added November 19, 2018
The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen-binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase). We sought to determine the evolutionary origin of GPBP isoforms. Our findings reveal the presence of GPBP in unicellular protists, with GPBP-2 as the most ancient isoform. In vertebrates, GPBP-1 assumed extracellular function that is further enhanced by membrane-bound GPBP-3 in mammalians, whereas GPBP-2 retained intracellular function. Moreover, GPBP-2 possesses a dual intracellular/extracellular function in cnidarians, an early nonbilaterian group. We conclude that GPBP functioning both inside and outside the cell was of fundamental importance for the evolutionary transition to animal multicellularity and tissue evolution.
© 2019 Darris et al.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties.
Chen L, Fish AE, Capra JA
(2018) PLoS Comput Biol 14: e1006484
MeSH Terms: Animals, Conserved Sequence, Enhancer Elements, Genetic, Evolution, Molecular, Genomics, Humans, Machine Learning, Mammals, Neural Networks, Computer, Sequence Alignment, Sequence Analysis, DNA, Support Vector Machine
Show Abstract · Added March 3, 2020
Genomic regions with gene regulatory enhancer activity turnover rapidly across mammals. In contrast, gene expression patterns and transcription factor binding preferences are largely conserved between mammalian species. Based on this conservation, we hypothesized that enhancers active in different mammals would exhibit conserved sequence patterns in spite of their different genomic locations. To investigate this hypothesis, we evaluated the extent to which sequence patterns that are predictive of enhancers in one species are predictive of enhancers in other mammalian species by training and testing two types of machine learning models. We trained support vector machine (SVM) and convolutional neural network (CNN) classifiers to distinguish enhancers defined by histone marks from the genomic background based on DNA sequence patterns in human, macaque, mouse, dog, cow, and opossum. The classifiers accurately identified many adult liver, developing limb, and developing brain enhancers, and the CNNs outperformed the SVMs. Furthermore, classifiers trained in one species and tested in another performed nearly as well as classifiers trained and tested on the same species. We observed similar cross-species conservation when applying the models to human and mouse enhancers validated in transgenic assays. This indicates that many short sequence patterns predictive of enhancers are largely conserved. The sequence patterns most predictive of enhancers in each species matched the binding motifs for a common set of TFs enriched for expression in relevant tissues, supporting the biological relevance of the learned features. Thus, despite the rapid change of active enhancer locations between mammals, cross-species enhancer prediction is often possible. Our results suggest that short sequence patterns encoding enhancer activity have been maintained across more than 180 million years of mammalian evolution.
0 Communities
1 Members
0 Resources
MeSH Terms
Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa.
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF
(2018) BMC Evol Biol 18: 51
MeSH Terms: Animals, DNA-Binding Proteins, Evolution, Molecular, GTP-Binding Protein alpha Subunits, Gene Duplication, Nucleotide Motifs, Phylogeny, Retroelements, Signal Transduction, Vertebrates
Show Abstract · Added March 21, 2020
BACKGROUND - Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete.
RESULTS - We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events.
CONCLUSIONS - Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
0 Communities
2 Members
0 Resources
MeSH Terms
The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.
Fidler AL, Boudko SP, Rokas A, Hudson BG
(2018) J Cell Sci 131:
MeSH Terms: Animals, Cellular Microenvironment, Collagen Type IV, Evolution, Molecular, Extracellular Matrix, Protein Conformation, alpha-Helical
Show Abstract · Added April 16, 2018
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
6 MeSH Terms