, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 92

Publication Record

Connections

Antioxidants prevent inflammation and preserve the optic projection and visual function in experimental neurotrauma.
Bernardo-Colón A, Vest V, Clark A, Cooper ML, Calkins DJ, Harrison FE, Rex TS
(2018) Cell Death Dis 9: 1097
MeSH Terms: Animals, Antioxidants, Ascorbic Acid, Axons, Diet, Ketogenic, Disease Models, Animal, Evoked Potentials, Visual, Inflammasomes, Inflammation, Interleukin-1alpha, Interleukin-1beta, Male, Mice, Mice, Inbred C57BL, Optic Nerve Injuries, Oxidative Stress, Reactive Oxygen Species, Retina, Superoxides, Vitamin E
Show Abstract · Added April 2, 2019
We investigated the role of oxidative stress and the inflammasome in trauma-induced axon degeneration and vision loss using a mouse model. The left eyes of male mice were exposed to over-pressure air waves. Wild-type C57Bl/6 mice were fed normal, high-vitamin-E (VitE), ketogenic or ketogenic-control diets. Mice lacking the ability to produce vitamin C (VitC) were maintained on a low-VitC diet. Visual evoked potentials (VEPs) and retinal superoxide levels were measured in vivo. Tissue was collected for biochemical and histological analysis. Injury increased retinal superoxide, decreased SOD2, and increased cleaved caspase-1, IL-1α, IL-1β, and IL-18 levels. Low-VitC exacerbated the changes and the high-VitE diet mitigated them, suggesting that oxidative stress led to the increase in IL-1α and activation of the inflammasome. The injury caused loss of nearly 50% of optic nerve axons at 2 weeks and astrocyte hypertrophy in mice on normal diet, both of which were prevented by the high-VitE diet. The VEP amplitude was decreased after injury in both control-diet and low-VitC mice, but not in the high-VitE-diet mice. The ketogenic diet also prevented the increase in superoxide levels and IL-1α, but had no effect on IL-1β. Despite this, the ketogenic diet preserved optic nerve axons, prevented astrocyte hypertrophy, and preserved the VEP amplitude. These data suggest that oxidative stress induces priming and activation of the inflammasome pathway after neurotrauma of the visual system. Further, blocking the activation of the inflammasome pathway may be an effective post-injury intervention.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Prefrontal Control of Visual Distraction.
Cosman JD, Lowe KA, Zinke W, Woodman GF, Schall JD
(2018) Curr Biol 28: 414-420.e3
MeSH Terms: Animals, Attention, Evoked Potentials, Macaca mulatta, Male, Prefrontal Cortex, Visual Cortex, Visual Perception
Show Abstract · Added March 15, 2018
Avoiding distraction by conspicuous but irrelevant stimuli is critical to accomplishing daily tasks. Regions of prefrontal cortex control attention by enhancing the representation of task-relevant information in sensory cortex, which can be measured in modulation of both single neurons and event-related electrical potentials (ERPs) on the cranial surface [1, 2]. When irrelevant information is particularly conspicuous, it can distract attention and interfere with the selection of behaviorally relevant information. Such distraction can be minimized via top-down control [3-5], but the cognitive and neural mechanisms giving rise to this control over distraction remain uncertain and debated [6-9]. Bridging neurophysiology to electrophysiology, we simultaneously recorded neurons in prefrontal cortex and ERPs over extrastriate visual cortex to track the processing of salient distractors during a visual search task. Critically, when the salient distractor was successfully ignored, but not otherwise, we observed robust suppression of salient distractor representations. Like target selection, the distractor suppression was observed in prefrontal cortex before it appeared over extrastriate cortical areas. Furthermore, all prefrontal neurons that showed suppression of the task-irrelevant distractor also contributed to selecting the target. This suggests a common prefrontal mechanism is responsible for both selecting task-relevant and suppressing task-irrelevant information in sensory cortex. Taken together, our results resolve a long-standing debate over the mechanisms that prevent distraction, and provide the first evidence directly linking suppressed neural firing in prefrontal cortex with surface ERP measures of distractor suppression.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Word Processing in Children With Autism Spectrum Disorders: Evidence From Event-Related Potentials.
Sandbank M, Yoder P, Key AP
(2017) J Speech Lang Hear Res 60: 3441-3455
MeSH Terms: Autism Spectrum Disorder, Child Language, Child, Preschool, Comprehension, Electroencephalography, Evoked Potentials, Female, Humans, Male, Recognition, Psychology, Speech Perception, Vocabulary
Show Abstract · Added March 30, 2020
Purpose - This investigation was conducted to determine whether young children with autism spectrum disorders exhibited a canonical neural response to word stimuli and whether putative event-related potential (ERP) measures of word processing were correlated with a concurrent measure of receptive language. Additional exploratory analyses were used to examine whether the magnitude of the association between ERP measures of word processing and receptive language varied as a function of the number of word stimuli the participants reportedly understood.
Method - Auditory ERPs were recorded in response to spoken words and nonwords presented with equal probability in 34 children aged 2-5 years with a diagnosis of autism spectrum disorder who were in the early stages of language acquisition. Average amplitudes and amplitude differences between word and nonword stimuli within 200-500 ms were examined at left temporal (T3) and parietal (P3) electrode clusters. Receptive vocabulary size and the number of experimental stimuli understood were concurrently measured using the MacArthur-Bates Communicative Development Inventories.
Results - Across the entire participant group, word-nonword amplitude differences were diminished. The average word-nonword amplitude difference at T3 was related to receptive vocabulary only if 5 or more word stimuli were understood.
Conclusions - If ERPs are to ever have clinical utility, their construct validity must be established by investigations that confirm their associations with predictably related constructs. These results contribute to accruing evidence, suggesting that a valid measure of auditory word processing can be derived from the left temporal response to words and nonwords. In addition, this measure can be useful even for participants who do not reportedly understand all of the words presented as experimental stimuli, though it will be important for researchers to track familiarity with word stimuli in future investigations.
Supplemental Material - https://doi.org/10.23641/asha.5614840.
0 Communities
1 Members
0 Resources
MeSH Terms
Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM
(2017) J Neurosci 37: 11377-11389
MeSH Terms: Aging, Animals, Cells, Cultured, Evoked Potentials, Auditory, Geniculate Bodies, Presynaptic Terminals, Rats, Rats, Inbred F344, Receptors, Nicotinic, Sensory Receptor Cells
Show Abstract · Added April 3, 2018
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population.
Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
0 Communities
1 Members
0 Resources
MeSH Terms
Personality correlates of individual differences in the recruitment of cognitive mechanisms when rewards are at stake.
Heritage AJ, Long LJ, Woodman GF, Zald DH
(2018) Psychophysiology 55:
MeSH Terms: Attention, Brain, Cognition, Electroencephalography, Evoked Potentials, Female, Humans, Individuality, Inhibition, Psychological, Male, Memory, Long-Term, Memory, Short-Term, Neuropsychological Tests, Personality, Reward
Show Abstract · Added March 21, 2018
Individuals differ greatly in their sensitivity to rewards and punishments. In the extreme, these differences are implicated in a range of psychiatric disorders from addiction to depression. However, it is unclear how these differences influence the recruitment of attention, working memory, and long-term memory when responding to potential rewards. Here, we used a rewarded memory-guided visual search task and ERPs to examine the influence of individual differences in self-reported reward/punishment sensitivity, as measured by the Behavioral Inhibition System (BIS)/Behavioral Activation System (BAS) scales, on the recruitment of cognitive mechanisms in conditions of potential reward. Select subscales of the BAS, including the fun seeking and reward responsiveness scales, showed unique relationships with context updating to reward cues and working memory maintenance of potentially rewarded stimuli. In contrast, BIS scores showed unique relationships with deployment of attention at different points in the task. These results suggest that sensitivity to rewards (i.e., BAS) and to punishment (i.e., BIS) may play an important role in the recruitment of specific and distinct cognitive mechanisms in conditions of potential rewards.
© 2017 Society for Psychophysiological Research.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC
(2017) Hear Res 353: 213-223
MeSH Terms: Animals, Auditory Fatigue, Auditory Threshold, Cochlea, Cochlear Diseases, Disease Models, Animal, Evoked Potentials, Auditory, Brain Stem, Hair Cells, Auditory, Hearing, Hearing Loss, Noise-Induced, Macaca mulatta, Noise, Otoacoustic Emissions, Spontaneous, Synapses, Synaptic Transmission, Time Factors
Show Abstract · Added April 3, 2018
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents.
Copyright © 2017 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress.
Hines-Beard J, Bond WS, Backstrom JR, Rex TS
(2016) J Neuroinflammation 13: 39
MeSH Terms: Animals, Calcium-Binding Proteins, Cholera Toxin, Cytokines, Dependovirus, Disease Models, Animal, Erythropoietin, Evoked Potentials, Visual, Fluorescein Angiography, Gene Expression Regulation, Genetic Therapy, Glaucoma, Ki-67 Antigen, Mice, Mice, Inbred DBA, Microfilament Proteins, Microglia, Oxidative Stress, Photic Stimulation, Retina, Transduction, Genetic
Show Abstract · Added April 2, 2019
BACKGROUND - Glaucoma is a complex neurodegeneration and a leading cause of blindness worldwide. Current therapeutic strategies, which are all directed towards lowering the intraocular pressure (IOP), do not stop progression of the disease. We have demonstrated that recombinant adeno-associated virus (rAAV) gene delivery of a form of erythropoietin with attenuated erythropoietic activity (EpoR76E) can preserve retinal ganglion cells, their axons, and vision without decreasing IOP. The goal of this study was to determine if modulation of neuroinflammation or oxidative stress played a role in the neuroprotective activity of EPO.R76E.
METHODS - Five-month-old DBA/2J mice were treated with either rAAV.EpoR76E or a control vector and collected at 8 months of age. Neuroprotection was assessed by quantification of axon transport and visual evoked potentials. Microglia number and morphology and cytokine and chemokine levels were quantified. Message levels of oxidative stress-related proteins were assessed.
RESULTS - Axon transport and visual evoked potentials were preserved in rAAV.EpoR76E-treated mice. The number of microglia was decreased in retinas from 8-month-old rAAV.EpoR76E-treated mice, but proliferation was unaffected. The blood-retina barrier was also unaffected by treatment. Levels of some pro-inflammatory cytokines were decreased in retinas from rAAV.EpoR76E-treated mice including IL-1, IL-12, IL-13, IL-17, CCL4, and CCL5. TNFα messenger RNA (mRNA) was increased in retinas from 8-month-old mice compared to 3-month-old controls regardless of treatment. Expression of several antioxidant proteins was increased in retinas of rAAV.EpoR76E-treated 8-month-old mice.
CONCLUSIONS - Treatment with rAAV.EpoR76E preserves vision in the DBA/2J model of glaucoma at least in part by decreasing infiltration of peripheral immune cells, modulating microglial reactivity, and decreasing oxidative stress.
0 Communities
1 Members
0 Resources
MeSH Terms
Neural control of visual search by frontal eye field: chronometry of neural events and race model processes.
Nelson MJ, Murthy A, Schall JD
(2016) J Neurophysiol 115: 1954-69
MeSH Terms: Animals, Evoked Potentials, Visual, Frontal Lobe, Macaca mulatta, Macaca radiata, Neurons, Reaction Time, Saccades, Visual Fields
Show Abstract · Added May 9, 2017
We investigated the chronometry of neural processes in frontal eye fields of macaques performing double-step saccade visual search in which a conspicuous target changes location in the array on a random fraction of trials. Durations of computational processes producing a saccade to original and final target locations (GO1 and GO2, respectively) are derived from response times (RT) on different types of trials. In these data, GO2 tended to be faster than GO1, demonstrating that inhibition of the initial saccade did not delay production of the compensated saccade. Here, we measured the dynamics of visual, visuomovement, and movement neuron activity in relation to these processes by examining trials when neurons instantiated either process. First, we verified that saccades were initiated when the discharge rate of movement neurons reached a threshold that was invariant across RT and trial type. Second, the time when visual and visuomovement neurons selected the target and when movement neuron activity began to accumulate were not significantly different across trial type. Third, the interval from the beginning of accumulation to threshold of movement-related activity was significantly shorter when instantiating the GO2 relative to the GO1 process. Differences observed between monkeys are discussed. Fourth, random variation of RT was accounted for to some extent by random variation in both the onset and duration of selective activity of each neuron type but mostly by variation of movement neuron accumulation duration. These findings offer new insights into the sources of control of target selection and saccade production in dynamic environments.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Somatosensory Event-Related Potentials and Association with Tactile Behavioral Responsiveness Patterns in Children with ASD.
Cascio CJ, Gu C, Schauder KB, Key AP, Yoder P
(2015) Brain Topogr 28: 895-903
MeSH Terms: Adolescent, Autism Spectrum Disorder, Brain Mapping, Child, Child, Preschool, Evoked Potentials, Somatosensory, Female, Humans, Male, Parents, Physical Stimulation, Psychophysics, Reaction Time, Somatosensory Cortex, Time Factors, Touch
Show Abstract · Added February 22, 2016
The goal of this study was to explore neural response to touch in children with and without autism spectrum disorder (ASD). Patterns of reduced (hypo-responsiveness) and enhanced (hyper-responsiveness) behavioral reaction to sensory input are prevalent in ASD, but their neural mechanisms are poorly understood. We measured event-related potentials (ERP) to a puff of air on the fingertip and collected parent report of tactile hypo- and hyper-responsiveness in children with ASD (n = 21, mean (SD) age 11.25 (3.09), 2 female), and an age-matched typically developing comparison group (n = 28, mean (SD) age 10.1 (3.08, 2 female). A global measure of ERP response strength approximately 220-270 ms post-stimulus was associated with tactile hypo-responsiveness in ASD, while tactile hyper-responsiveness was associated with earlier neural response (approximately 120-220 ms post-stimulus) in both groups. These neural responses also related to autism severity. These results suggest that, in ASD, tactile hypo- and hyper-responsiveness may reflect different waypoints in the neural processing stream of sensory input. The timing of the relationship for hyper-responsiveness is consistent with somatosensory association cortical response, while that for hypo-responsiveness is more consistent with later processes that may involve allocation of attention or emotional valence to the stimulus.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey.
Kajikawa Y, Frey S, Ross D, Falchier A, Hackett TA, Schroeder CE
(2015) J Neurosci 35: 4140-50
MeSH Terms: Acoustic Stimulation, Animals, Auditory Pathways, Auditory Perception, Brain Mapping, Evoked Potentials, Auditory, Female, Functional Laterality, Humans, Image Processing, Computer-Assisted, Macaca mulatta, Magnetic Resonance Imaging, Male, Psychoacoustics, Temporal Lobe, Wakefulness
Show Abstract · Added February 22, 2016
The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas.
Copyright © 2015 the authors 0270-6474/15/354140-11$15.00/0.
0 Communities
1 Members
0 Resources
16 MeSH Terms