Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 107

Publication Record

Connections

Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.
Feng H, Gusev A, Pasaniuc B, Wu L, Long J, Abu-Full Z, Aittomäki K, Andrulis IL, Anton-Culver H, Antoniou AC, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blanco A, Blomqvist C, Boeckx B, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Brauch H, Brenner H, Briceno I, Broeks A, Brüning T, Burwinkel B, Cai Q, Caldés T, Caligo MA, Campbell I, Canisius S, Campa D, Carter BD, Carter J, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, GEMO Study Collaborators, EMBRACE Collaborators, GC-HBOC study Collaborators, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, De Leeneer K, Dennis J, Devilee P, Diez O, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gabrielson M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, Hake C, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Huang G, Hulick PJ, Humphreys K, Imyanitov EN, ABCTB Investigators, HEBON Investigators, BCFR Investigators, OCGN Investigators, Isaacs C, Jakimovska M, Jakubowska A, James P, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Jung A, Karlan BY, Khusnutdinova E, Kiiski JI, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leroux D, Leslie G, Lester J, Lesueur F, Lindor N, Lindström S, Lo WY, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martens JWM, Martinez ME, Matricardi L, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Kapoor PM, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Muranen TA, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Plaseska-Karanfilska D, Poppe B, Pradhan N, Prajzendanc K, Presneau N, Punie K, Pylkäs K, Radice P, Rantala J, Rashid MU, Rennert G, Risch HA, Robson M, Romero A, Saloustros E, Sandler DP, Santos C, Sawyer EJ, Schmidt MK, Schmidt DF, Schmutzler RK, Schoemaker MJ, Scott RJ, Sharma P, Shu XO, Simard J, Singer CF, Skytte AB, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Vieiro-Balo P, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Milne RL, Easton DF, Chenevix-Trench G, Zheng W, Kraft P, Jiang X
(2020) Genet Epidemiol 44: 442-468
MeSH Terms: Breast Neoplasms, Estrogens, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomics, Humans, Receptors, Estrogen, Risk Assessment, Transcriptome, Vesicular Transport Proteins
Show Abstract · Added March 3, 2020
Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.
© 2020 The Authors. Genetic Epidemiology published by Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
The Role of Estrogen in Brain and Cognitive Aging.
Russell JK, Jones CK, Newhouse PA
(2019) Neurotherapeutics 16: 649-665
MeSH Terms: Animals, Brain, Cognitive Aging, Estrogens, Humans
Show Abstract · Added March 3, 2020
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
0 Communities
2 Members
0 Resources
5 MeSH Terms
Estrogen, Stress, and Depression: Cognitive and Biological Interactions.
Albert KM, Newhouse PA
(2019) Annu Rev Clin Psychol 15: 399-423
MeSH Terms: Attention, Brain, Cognitive Dysfunction, Depressive Disorder, Major, Emotional Regulation, Estrogens, Female, Humans, Nerve Net, Stress, Psychological
Show Abstract · Added March 3, 2020
This article reviews the interactions of estrogen changes and psychosocial stress in contributing to vulnerability to major depressive disorder (MDD) in women. Estrogen modulates brain networks and processes related to changes in stress response, cognition, and emotional dysregulation that are core characteristics of MDD. Synergistic effects of estrogen on cognitive and emotional function, particularly during psychosocial stress, may underlie the association of ovarian hormone fluctuation and depression in women. We propose a model of estrogen effects on multiple brain systems that interface with stress-related emotional and cognitive processes implicated in MDD and discuss possible mechanisms through which reproductive events and changes in estrogen may contribute to MDD risk in women with other concurrent risk factors.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Cystitis and Struvite Urolithiasis in Nude Mice Implanted with Sustained-release Estrogen Pellets.
Salleng KJ, Jones CP, Boyd KL, Hicks DJ, Williams MM, Cook RS
(2018) Comp Med 68: 256-260
MeSH Terms: Animals, Cystitis, Estrogens, Female, Humans, MCF-7 Cells, Mice, Mice, Nude, Staphylococcus, Struvite, Urolithiasis
Show Abstract · Added April 15, 2019
Female nude mice (J:NU-Foxn1nu; age, 6 wk) were injected with 1 million MCF7 human breast cancer cells in the fourth mammary fat pads and received a 21-d sustained-release estrogen pellet (0.25 mg) subcutaneously in the dorsum of the neck. All mice were maintained in sterile housing and provided sterile water and irradiated rodent chow. Approximately 6 wk after implantation, 4 of the 30 mice showed clinical signs of depression and dehydration. The 2 animals most severely affected were euthanized and presented for necropsy. The urinary bladders of these animals were distended with variable sized white, opaque uroliths. Urinalysis revealed coccal bacteria, erythrocytes, neutrophils and struvite crystals. Urine cultures from both necropsied animals grew heavy, pure growths of Staphylococcus xylosus. The organism was sensitive to all antibiotics tested except erythromycin (intermediate). Analysis of the uroliths revealed 100% struvite composition. Remaining mice in the study were evaluated clinically for hydration status, the ability to urinate, and the presence of palpable stones in the urinary bladder; one additional mouse had a firm, nonpainful bladder (urolithiasis suspected). Given the sensitivity of the organisms cultured from urine samples, the remaining mice were placed on enrofloxacin in the drinking water (0.5 mg/mL). All remaining mice completed the study without further morbidity or mortality. Previous studies have reported the association of estrogen supplementation with urinary bladder pathology, including infection and urolithiasis. Here we present a case of urolithiasis and cystitis in nude mice receiving estrogen supplementation that was associated with Staphylococcus xylosus, which previously was unreported in this context. When assessing these nude mice for urolithiasis, we found that visualizing the stones through the body wall, bladder palpation, and bladder expression were helpful in identifying affected mice.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Coronary Artery Calcification (CAC) and Post-Trial Cardiovascular Events and Mortality Within the Women's Health Initiative (WHI) Estrogen-Alone Trial.
Poornima IG, Mackey RH, Allison MA, Manson JE, Carr JJ, LaMonte MJ, Chang Y, Kuller LH, WHI and WHI‐CAC Study Investigators
(2017) J Am Heart Assoc 6:
MeSH Terms: Chi-Square Distribution, Computed Tomography Angiography, Coronary Angiography, Coronary Artery Disease, Estrogen Replacement Therapy, Estrogens, Conjugated (USP), Female, Humans, Incidence, Middle Aged, Multivariate Analysis, Postmenopause, Proportional Hazards Models, Risk Factors, Time Factors, Treatment Outcome, United States, Vascular Calcification, Women's Health
Show Abstract · Added January 10, 2020
BACKGROUND - Among women aged 50 to 59 years at baseline in the Women's Health Initiative (WHI) Estrogen-Alone (E-Alone) trial, randomization to conjugated equine estrogen-alone versus placebo was associated with lower risk of myocardial infarction and mortality, and, in an ancillary study, the WHI-CACS (WHI Coronary Artery Calcification Study) with lower CAC, measured by cardiac computed tomography ≈8.7 years after baseline randomization. We hypothesized that higher CAC would be related to post-trial coronary heart disease (CHD), cardiovascular disease (CVD), and total mortality, independent of baseline randomization or risk factors.
METHODS AND RESULTS - WHI-CACS participants (n=1020) were followed ≈8 years from computed tomography scan in 2005 (mean age=64.4) through 2013 for incident CHD (myocardial infarction and fatal CHD, n=17), CVD (n=69), and total mortality (n=55). Incident CHD and CVD analyses excluded women with CVD before scan (n=89). Women with CAC=0 (n=54%) had very low age-adjusted rates/1000 person-years of CHD (0.91), CVD (5.56), and mortality (3.45). In comparison, rates were ≈2-fold higher for women with any CAC (>0). Associations were not modified by baseline randomization to conjugated equine estrogen-alone versus placebo. Adjusted for baseline randomization and risk factors, the hazard ratio (95% confidence interval) for CAC >100 (19%) was 4.06 (2.11, 7.80) for CVD and 2.70 (1.26, 5.79) for mortality.
CONCLUSIONS - Among a subset of postmenopausal women aged 50 to 59 years at baseline in the WHI E-Alone Trial, CAC at mean age of 64 years was strongly related to incident CHD, CVD, and to total mortality over ≈8 years, independent of baseline randomization to conjugated equine estrogen-alone versus placebo or CVD risk factors.
CLINICAL TRIAL REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT00000611.
© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
0 Communities
1 Members
0 Resources
MeSH Terms
Endogenous Estrogens, Estrogen Metabolites, and Breast Cancer Risk in Postmenopausal Chinese Women.
Moore SC, Matthews CE, Ou Shu X, Yu K, Gail MH, Xu X, Ji BT, Chow WH, Cai Q, Li H, Yang G, Ruggieri D, Boyd-Morin J, Rothman N, Hoover RN, Gao YT, Zheng W, Ziegler RG
(2016) J Natl Cancer Inst 108:
MeSH Terms: Aged, Asian Americans, Breast Neoplasms, Case-Control Studies, China, Estradiol, Estrogens, Estrone, Female, Humans, Incidence, Metabolic Networks and Pathways, Middle Aged, Odds Ratio, Postmenopause, United States
Show Abstract · Added May 4, 2017
BACKGROUND - The role of estrogen metabolism in determining breast cancer risk and differences in breast cancer rates between high-incidence and low-incidence nations is poorly understood.
METHODS - We measured urinary concentrations of estradiol and estrone (parent estrogens) and 13 estrogen metabolites formed by irreversible hydroxylation at the C-2, C-4, or C-16 positions of the steroid ring in a nested case-control study of 399 postmenopausal invasive breast cancer case participants and 399 matched control participants from the population-based Shanghai Women's Health Study cohort. Odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer by quartiles of metabolic pathway groups, pathway ratios, and individual estrogens/estrogen metabolites were estimated by multivariable conditional logistic regression. Urinary estrogen/estrogen metabolite measures were compared with those of postmenopausal non-hormone-using Asian Americans, a population with three-fold higher breast cancer incidence rates. All statistical tests were two-sided.
RESULTS - Urinary concentrations of parent estrogens were strongly associated with breast cancer risk (ORQ4vsQ1 = 1.94, 95% CI = 1.21 to 3.12, Ptrend = .01). Of the pathway ratios, the 2-pathway:total estrogens/estrogen metabolites and 2-pathway:parent estrogens were inversely associated with risk (ORQ4vsQ1 = 0.57, 95% CI = 0.35 to 0.91, Ptrend = .03, and ORQ4vsQ1 = 0.61, 95% CI = 0.37 to 0.99, Ptrend = .04, respectively). After adjusting for parent estrogens, these associations remained clearly inverse but lost statistical significance (ORQ4vsQ1 = 0.65, 95% CI = 0.39 to 1.06, Ptrend = .12 and ORQ4vsQ1 = 0.76, 95% CI = 0.44 to 1.32, Ptrend = .28). The urinary concentration of all estrogens/estrogen metabolites combined in Asian American women was triple that in Shanghai women.
CONCLUSIONS - Lower urinary parent estrogen concentrations and more extensive 2-hydroxylation were each associated with reduced postmenopausal breast cancer risk in a low-risk nation. Markedly higher total estrogen/estrogen metabolite concentrations in postmenopausal United States women (Asian Americans) than in Shanghai women may partly explain higher breast cancer rates in the United States.
Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Estrogen and insulin transport through the blood-brain barrier.
May AA, Bedel ND, Shen L, Woods SC, Liu M
(2016) Physiol Behav 163: 312-321
MeSH Terms: ATP Binding Cassette Transporter, Subfamily B, Member 1, Animals, Blood Vessels, Blood-Brain Barrier, Body Weight, Brain, Dietary Fats, Estrogens, Female, Glucose Transporter Type 1, Insulin, Insulin Resistance, Male, Obesity, Ovariectomy, Rats, Rats, Long-Evans, Synaptophysin
Show Abstract · Added March 2, 2017
Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth.
Morrison MM, Williams MM, Vaught DB, Hicks D, Lim J, McKernan C, Aurisicchio L, Ciliberto G, Simion C, Sweeney C, Cook RS
(2016) Oncogene 35: 1143-52
MeSH Terms: Animals, Breast Neoplasms, Cell Proliferation, Disease-Free Survival, Drug Resistance, Neoplasm, Estradiol, Estrogen Receptor alpha, Estrogens, Female, Fulvestrant, Gene Expression Regulation, Neoplastic, Humans, MCF-7 Cells, Membrane Glycoproteins, Mice, Receptor, ErbB-3, Xenograft Model Antitumor Assays
Show Abstract · Added April 15, 2019
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the antiestrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4 and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer data sets. LRIG1, an estrogen-inducible ErbB downregulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to downregulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, whereas cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα downregulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in antiestrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways and blunting therapeutic response to fulvestrant.
0 Communities
1 Members
0 Resources
MeSH Terms
Estrogen, Stress, and Depression: A Neurocognitive Model.
Newhouse P, Albert K
(2015) JAMA Psychiatry 72: 727-9
MeSH Terms: Depression, Depressive Disorder, Estradiol, Estrogens, Female, Humans, Perimenopause
Added February 22, 2016
0 Communities
1 Members
0 Resources
7 MeSH Terms
Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P450 19A1 steroid aromatase.
Yoshimoto FK, Guengerich FP
(2014) J Am Chem Soc 136: 15016-25
MeSH Terms: Aldehydes, Androgens, Aromatase, Estrogens, Formates, Humans, Kinetics, Oxidation-Reduction, Oxygen, Water
Show Abstract · Added January 20, 2015
Aromatase is the cytochrome P450 enzyme that cleaves the C10-C19 carbon-carbon bond of androgens to form estrogens, in a three-step process. Compound I (FeO(3+)) and ferric peroxide (FeO2(-)) have both been proposed in the literature as the active iron species in the third step, yielding an estrogen and formic acid. Incubation of purified aromatase with its 19-deutero-19-oxo androgen substrate was performed in the presence of (18)O2, and the products were derivatized using a novel diazo reagent. Analysis of the products by high-resolution mass spectrometry showed a lack of (18)O incorporation in the product formic acid, supporting only the Compound I pathway. Furthermore, a new androgen 19-carboxylic acid product was identified. The rates of nonenzymatic hydration of the 19-oxo androgen and dehydration of the 19,19-gem-diol were shown to be catalytically competent. Thus, the evidence supports Compound I and not ferric peroxide as the active iron species in the third step of the steroid aromatase reaction.
0 Communities
1 Members
0 Resources
10 MeSH Terms