Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 47

Publication Record

Connections

ERα-Mediated Nuclear Sequestration of RSK2 Is Required for ER Breast Cancer Tumorigenesis.
Ludwik KA, McDonald OG, Brenin DR, Lannigan DA
(2018) Cancer Res 78: 2014-2025
MeSH Terms: Animals, Breast Neoplasms, Carcinogenesis, Cell Nucleus, Estrogen Receptor alpha, Female, Humans, MCF-7 Cells, Mice, Mice, Inbred C57BL, Neoplasm Invasiveness, Ribosomal Protein S6 Kinases, 90-kDa
Show Abstract · Added July 20, 2018
Although ribosomal protein S6 kinase A3 (RSK2) activation status positively correlates with patient responses to antiestrogen hormonal therapies, the mechanistic basis for these observations is unknown. Using multiple and models of estrogen receptor-positive (ER) breast cancer, we report that ERα sequesters active RSK2 into the nucleus to promote neoplastic transformation and facilitate metastatic tumor growth. RSK2 physically interacted with ERα through its N terminus to activate a proneoplastic transcriptional network critical to the ER lineage in the mammary gland, thereby providing a gene signature that effectively stratified patient tumors according to ERα status. ER tumor growth was strongly dependent on nuclear RSK2, and transgenic mice engineered to stably express nuclear RSK2 in the mammary gland developed high-grade ductal carcinoma Mammary cells isolated from the transgenic model and introduced systemically successfully disseminated and established metastatic lesions. Antiestrogens disrupted the interaction between RSK2 and ERα, driving RSK2 into the cytoplasm and impairing tumor formation. These findings establish RSK2 as an obligate participant of ERα-mediated transcriptional programs, tumorigenesis, and divergent patient responses to antiestrogen therapies. Nuclear accumulation of active RSK drives a protumorigenic transcriptional program and renders ER breast cancer susceptible to endocrine-based therapies. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Hepatocyte estrogen receptor alpha mediates estrogen action to promote reverse cholesterol transport during Western-type diet feeding.
Zhu L, Shi J, Luu TN, Neuman JC, Trefts E, Yu S, Palmisano BT, Wasserman DH, Linton MF, Stafford JM
(2018) Mol Metab 8: 106-116
MeSH Terms: Animals, Atherosclerosis, Biological Transport, Cells, Cultured, Cholesterol, Diet, Western, Estrogen Receptor alpha, Female, Hepatocytes, Insulin Resistance, Macrophages, Male, Mice, Mice, Inbred C57BL, Obesity, Sex Factors
Show Abstract · Added April 10, 2018
OBJECTIVE - Hepatocyte deletion of estrogen receptor alpha (LKO-ERα) worsens fatty liver, dyslipidemia, and insulin resistance in high-fat diet fed female mice. However, whether or not hepatocyte ERα regulates reverse cholesterol transport (RCT) in mice has not yet been reported.
METHODS AND RESULTS - Using LKO-ERα mice and wild-type (WT) littermates fed a Western-type diet, we found that deletion of hepatocyte ERα impaired in vivo RCT measured by the removal of H-cholesterol from macrophages to the liver, and subsequently to feces, in female mice but not in male mice. Deletion of hepatocyte ERα decreased the capacity of isolated HDL to efflux cholesterol from macrophages and reduced the ability of isolated hepatocytes to accept cholesterol from HDL ex vivo in both sexes. However, only in female mice, LKO-ERα increased serum cholesterol levels and increased HDL particle sizes. Deletion of hepatocyte ERα increased adiposity and worsened insulin resistance to a greater degree in female than male mice. All of the changes lead to a 5.6-fold increase in the size of early atherosclerotic lesions in female LKO-ERα mice compared to WT controls.
CONCLUSIONS - Estrogen signaling through hepatocyte ERα plays an important role in RCT and is protective against lipid retention in the artery wall during early stages of atherosclerosis in female mice fed a Western-type diet.
Published by Elsevier GmbH.
0 Communities
1 Members
0 Resources
16 MeSH Terms
A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus.
Kamitakahara A, Bouyer K, Wang CH, Simerly R
(2018) J Comp Neurol 526: 133-145
MeSH Terms: Age Factors, Agouti-Related Protein, Analysis of Variance, Animals, Animals, Newborn, Arcuate Nucleus of Hypothalamus, Axons, ELAV-Like Protein 3, Estrogen Receptor alpha, Female, Green Fluorescent Proteins, Integrases, Leptin, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Neuropeptide Y, Receptors, Leptin, STAT3 Transcription Factor
Show Abstract · Added April 11, 2019
In the developing hypothalamus, the fat-derived hormone leptin stimulates the growth of axons from the arcuate nucleus of the hypothalamus (ARH) to other regions that control energy balance. These projections are significantly reduced in leptin deficient (Lep ) mice and this phenotype is largely rescued by neonatal leptin treatments. However, treatment of mature Lep mice is ineffective, suggesting that the trophic action of leptin is limited to a developmental critical period. To temporally delineate closure of this critical period for leptin-stimulated growth, we treated Lep mice with exogenous leptin during a variety of discrete time periods, and measured the density of Agouti-Related Peptide (AgRP) containing projections from the ARH to the ventral part of the dorsomedial nucleus of the hypothalamus (DMHv), and to the medial parvocellular part of the paraventricular nucleus (PVHmp). The results indicate that leptin loses its neurotrophic potential at or near postnatal day 28. The duration of leptin exposure appears to be important, with 9- or 11-day treatments found to be more effective than shorter (5-day) treatments. Furthermore, leptin treatment for 9 days or more was sufficient to restore AgRP innervation to both the PVHmp and DMHv in Lep females, but only to the DMHv in Lep males. Together, these findings reveal that the trophic actions of leptin are contingent upon timing and duration of leptin exposure, display both target and sex specificity, and that modulation of leptin-dependent circuit formation by each of these factors may carry enduring consequences for feeding behavior, metabolism, and obesity risk.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Association of FGFR1 with ERα Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER Breast Cancer.
Formisano L, Stauffer KM, Young CD, Bhola NE, Guerrero-Zotano AL, Jansen VM, Estrada MM, Hutchinson KE, Giltnane JM, Schwarz LJ, Lu Y, Balko JM, Deas O, Cairo S, Judde JG, Mayer IA, Sanders M, Dugger TC, Bianco R, Stricker T, Arteaga CL
(2017) Clin Cancer Res 23: 6138-6150
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Disease Models, Animal, Drug Resistance, Neoplasm, Estrogen Receptor Modulators, Estrogen Receptor alpha, Female, Fibroblast Growth Factors, Gene Amplification, Gene Expression Regulation, Neoplastic, Humans, Mice, Molecular Targeted Therapy, Neoplasm Staging, Protein Kinase Inhibitors, Protein Transport, Receptor, Fibroblast Growth Factor, Type 1, Signal Transduction, Transcription, Genetic
Show Abstract · Added March 14, 2018
amplification occurs in approximately 15% of estrogen receptor-positive (ER) human breast cancers. We investigated mechanisms by which amplification confers antiestrogen resistance to ER breast cancer. ER tumors from patients treated with letrozole before surgery were subjected to Ki67 IHC, FGFR1 FISH, and RNA sequencing (RNA-seq). ER/-amplified breast cancer cells, and patient-derived xenografts (PDX) were treated with FGFR1 siRNA or the FGFR tyrosine kinase inhibitor lucitanib. Endpoints were cell/xenograft growth, FGFR1/ERα association by coimmunoprecipitation and proximity ligation, ER genomic activity by ChIP sequencing, and gene expression by RT-PCR. ER/-amplified tumors in patients treated with letrozole maintained cell proliferation (Ki67). Estrogen deprivation increased total and nuclear FGFR1 and FGF ligands expression in ER/amplified primary tumors and breast cancer cells. In estrogen-free conditions, FGFR1 associated with ERα in tumor cell nuclei and regulated the transcription of ER-dependent genes. This association was inhibited by a kinase-dead FGFR1 mutant and by treatment with lucitanib. ChIP-seq analysis of estrogen-deprived ER/-amplified cells showed binding of FGFR1 and ERα to DNA. Treatment with fulvestrant and/or lucitanib reduced FGFR1 and ERα binding to DNA. RNA-seq data from -amplified patients' tumors treated with letrozole showed enrichment of estrogen response and E2F target genes. Finally, growth of ER/amplified cells and PDXs was more potently inhibited by fulvestrant and lucitanib combined than each drug alone.s These data suggest the ERα pathway remains active in estrogen-deprived ER/-amplified breast cancers. Therefore, these tumors are endocrine resistant and should be candidates for treatment with combinations of ER and FGFR antagonists. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Key Survival Factor, Mcl-1, Correlates with Sensitivity to Combined Bcl-2/Bcl-xL Blockade.
Williams MM, Lee L, Hicks DJ, Joly MM, Elion D, Rahman B, McKernan C, Sanchez V, Balko JM, Stricker T, Estrada MV, Cook RS
(2017) Mol Cancer Res 15: 259-268
MeSH Terms: Aniline Compounds, Antineoplastic Agents, Breast Neoplasms, Cell Line, Tumor, Cell Survival, Estrogen Receptor alpha, Female, Humans, MCF-7 Cells, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasms, Proto-Oncogene Proteins c-bcl-2, RNA, Messenger, Sulfonamides, bcl-X Protein
Show Abstract · Added April 6, 2017
An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of as compared with or (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured using Mcl-1/Bim proximity ligation assays. Importantly, gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of or and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1-selective inhibitors for targeted tumor cell killing. Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. .
©2016 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
15 MeSH Terms
F-Fluoroestradiol PET/CT Measurement of Estrogen Receptor Suppression during a Phase I Trial of the Novel Estrogen Receptor-Targeted Therapeutic GDC-0810: Using an Imaging Biomarker to Guide Drug Dosage in Subsequent Trials.
Wang Y, Ayres KL, Goldman DA, Dickler MN, Bardia A, Mayer IA, Winer E, Fredrickson J, Arteaga CL, Baselga J, Manning HC, Mahmood U, Ulaner GA
(2017) Clin Cancer Res 23: 3053-3060
MeSH Terms: Adult, Aged, Biomarkers, Pharmacological, Breast Neoplasms, Cinnamates, Dose-Response Relationship, Drug, Estradiol, Estrogen Receptor alpha, Female, Fulvestrant, Humans, Indazoles, Middle Aged, Molecular Imaging, Molecular Targeted Therapy, Positron Emission Tomography Computed Tomography, Receptors, Estrogen, Tamoxifen
Show Abstract · Added April 6, 2017
Evaluate F-fluoroestradiol (FES) PET/CT as a biomarker of estrogen receptor (ER) occupancy and/or downregulation during phase I dose escalation of the novel ER targeting therapeutic GDC-0810 and help select drug dosage for subsequent clinical trials. In a phase I clinical trial of GDC-0810, patients with ER-positive metastatic breast cancer underwent FES PET/CT before beginning therapy and at cycle 2, day 3 of GDC-0810 therapy. Up to five target lesions were selected per patient, and FES standardized uptake value (SUV) corrected for background was recorded for each lesion pretherapy and on-therapy. Complete ER downregulation was defined as ≥90% decrease in FES SUV. The effect of prior tamoxifen and fulvestrant therapy on FES SUV was assessed. Of 30 patients who underwent paired FES-PET scans, 24 (80%) achieved ≥90% decrease in FES avidity, including 1 of 3 patients receiving 200 mg/day, 2 of 4 patients receiving 400 mg/day, 14 of 16 patients receiving 600 mg/day, and 7 of 7 patients receiving 800 mg/day. Withdrawal of tamoxifen 2 months prior to FES PET/CT and withdrawal of fulvestrant 6 months prior to FES PET/CT both appeared sufficient to prevent effects on FES SUV. A dosage of 600 mg GDC-0810 per day was selected for phase II in part due to decreases in FES SUV achieved in phase I. FES PET/CT was a useful biomarker of ER occupancy and/or downregulation in a phase I dose escalation trial of GDC-0810 and helped select the dosage of the ER antagonist/degrader for phase II trials. .
©2016 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, Healey CS, Kar S, Pooley KA, Lopez-Knowles E, Dicks E, Barrowdale D, Sinnott-Armstrong NA, Sallari RC, Hillman KM, Kaufmann S, Sivakumaran H, Moradi Marjaneh M, Lee JS, Hills M, Jarosz M, Drury S, Canisius S, Bolla MK, Dennis J, Wang Q, Hopper JL, Southey MC, Broeks A, Schmidt MK, Lophatananon A, Muir K, Beckmann MW, Fasching PA, Dos-Santos-Silva I, Peto J, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Flyger H, González-Neira A, Perez JI, Anton-Culver H, Eunjung L, Arndt V, Brenner H, Meindl A, Schmutzler RK, Brauch H, Hamann U, Aittomäki K, Blomqvist C, Ito H, Matsuo K, Bogdanova N, Dörk T, Lindblom A, Margolin S, Kosma VM, Mannermaa A, Tseng CC, Wu AH, Lambrechts D, Wildiers H, Chang-Claude J, Rudolph A, Peterlongo P, Radice P, Olson JE, Giles GG, Milne RL, Haiman CA, Henderson BE, Goldberg MS, Teo SH, Yip CH, Nord S, Borresen-Dale AL, Kristensen V, Long J, Zheng W, Pylkäs K, Winqvist R, Andrulis IL, Knight JA, Devilee P, Seynaeve C, Figueroa J, Sherman ME, Czene K, Darabi H, Hollestelle A, van den Ouweland AM, Humphreys K, Gao YT, Shu XO, Cox A, Cross SS, Blot W, Cai Q, Ghoussaini M, Perkins BJ, Shah M, Choi JY, Kang D, Lee SC, Hartman M, Kabisch M, Torres D, Jakubowska A, Lubinski J, Brennan P, Sangrajrang S, Ambrosone CB, Toland AE, Shen CY, Wu PE, Orr N, Swerdlow A, McGuffog L, Healey S, Lee A, Kapuscinski M, John EM, Terry MB, Daly MB, Goldgar DE, Buys SS, Janavicius R, Tihomirova L, Tung N, Dorfling CM, van Rensburg EJ, Neuhausen SL, Ejlertsen B, Hansen TV, Osorio A, Benitez J, Rando R, Weitzel JN, Bonanni B, Peissel B, Manoukian S, Papi L, Ottini L, Konstantopoulou I, Apostolou P, Garber J, Rashid MU, Frost D, EMBRACE, Izatt L, Ellis S, Godwin AK, Arnold N, Niederacher D, Rhiem K, Bogdanova-Markov N, Sagne C, Stoppa-Lyonnet D, Damiola F, GEMO Study Collaborators, Sinilnikova OM, Mazoyer S, Isaacs C, Claes KB, De Leeneer K, de la Hoya M, Caldes T, Nevanlinna H, Khan S, Mensenkamp AR, HEBON, Hooning MJ, Rookus MA, Kwong A, Olah E, Diez O, Brunet J, Pujana MA, Gronwald J, Huzarski T, Barkardottir RB, Laframboise R, Soucy P, Montagna M, Agata S, Teixeira MR, kConFab Investigators, Park SK, Lindor N, Couch FJ, Tischkowitz M, Foretova L, Vijai J, Offit K, Singer CF, Rappaport C, Phelan CM, Greene MH, Mai PL, Rennert G, Imyanitov EN, Hulick PJ, Phillips KA, Piedmonte M, Mulligan AM, Glendon G, Bojesen A, Thomassen M, Caligo MA, Yoon SY, Friedman E, Laitman Y, Borg A, von Wachenfeldt A, Ehrencrona H, Rantala J, Olopade OI, Ganz PA, Nussbaum RL, Gayther SA, Nathanson KL, Domchek SM, Arun BK, Mitchell G, Karlan BY, Lester J, Maskarinec G, Woolcott C, Scott C, Stone J, Apicella C, Tamimi R, Luben R, Khaw KT, Helland Å, Haakensen V, Dowsett M, Pharoah PD, Simard J, Hall P, García-Closas M, Vachon C, Chenevix-Trench G, Antoniou AC, Easton DF, Edwards SL
(2016) Nat Genet 48: 374-86
MeSH Terms: Base Sequence, Breast Neoplasms, Carrier Proteins, Cell Cycle Proteins, Chromosomes, Human, Pair 6, Estrogen Receptor alpha, Female, Gene Expression, Gene Expression Regulation, Neoplastic, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Phenotype, Polymorphism, Single Nucleotide, Protein Binding, Risk Factors
Show Abstract · Added April 3, 2018
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
0 Communities
1 Members
0 Resources
MeSH Terms
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth.
Morrison MM, Williams MM, Vaught DB, Hicks D, Lim J, McKernan C, Aurisicchio L, Ciliberto G, Simion C, Sweeney C, Cook RS
(2016) Oncogene 35: 1143-52
MeSH Terms: Animals, Breast Neoplasms, Cell Proliferation, Disease-Free Survival, Drug Resistance, Neoplasm, Estradiol, Estrogen Receptor alpha, Estrogens, Female, Fulvestrant, Gene Expression Regulation, Neoplastic, Humans, MCF-7 Cells, Membrane Glycoproteins, Mice, Receptor, ErbB-3, Xenograft Model Antitumor Assays
Show Abstract · Added April 15, 2019
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the antiestrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4 and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer data sets. LRIG1, an estrogen-inducible ErbB downregulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to downregulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, whereas cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα downregulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in antiestrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways and blunting therapeutic response to fulvestrant.
0 Communities
1 Members
0 Resources
MeSH Terms
Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.
Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, Johnson N, Ghoussaini M, Hopper JL, Southey MC, Apicella C, Stone J, Schmidt MK, Broeks A, Van't Veer LJ, Hogervorst FB, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Gibson L, Aitken Z, Warren H, Sawyer E, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Schneeweiss A, Sohn C, Guénel P, Truong T, Cordina-Duverger E, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Benitez J, Zamora MP, Arias Perez JI, Menéndez P, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Hamann U, Brauch H, Justenhoven C, Brüning T, Ko YD, Nevanlinna H, Aittomäki K, Blomqvist C, Khan S, Bogdanova N, Dörk T, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Beesley J, Lambrechts D, Moisse M, Floris G, Beuselinck B, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Peissel B, Pensotti V, Couch FJ, Olson JE, Slettedahl S, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Kristensen V, Alnæs GG, Nord S, Borresen-Dale AL, Zheng W, Deming-Halverson S, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RA, Seynaeve CM, Van Asperen CJ, Garcia-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson M, Klevebring D, Hooning MJ, Hollestelle A, van Deurzen CH, Kriege M, Hall P, Li J, Liu J, Humphreys K, Cox A, Cross SS, Reed MW, Pharoah PD, Dunning AM, Shah M, Perkins BJ, Jakubowska A, Lubinski J, Jaworska-Bieniek K, Durda K, Ashworth A, Swerdlow A, Jones M, Schoemaker MJ, Meindl A, Schmutzler RK, Olswold C, Slager S, Toland AE, Yannoukakos D, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Matsuo K, Ito H, Iwata H, Ishiguro J, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Teo SH, Yip CH, Kang P, Ikram MK, Shu XO, Lu W, Gao YT, Cai H, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Lee SC, Sangrajrang S, Gaborieau V, Brennan P, Mckay J, Wu PE, Hou MF, Yu JC, Shen CY, Blot W, Cai Q, Signorello LB, Luccarini C, Bayes C, Ahmed S, Maranian M, Healey CS, González-Neira A, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Hunter DJ, Lindstrom S, Dennis J, Michailidou K, Bolla MK, Easton DF, dos Santos Silva I, Fletcher O, Peto J, GENICA Network, kConFab Investigators, Australian Ovarian Cancer Study Group
(2015) Hum Mol Genet 24: 2966-84
MeSH Terms: Adult, Aged, Asian Continental Ancestry Group, Breast Neoplasms, Chromosome Mapping, Chromosomes, Human, Pair 9, Enhancer Elements, Genetic, Estrogen Receptor alpha, European Continental Ancestry Group, Female, GATA3 Transcription Factor, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Hepatocyte Nuclear Factor 3-alpha, Humans, Kruppel-Like Transcription Factors, Middle Aged, Polymorphism, Single Nucleotide, Risk
Show Abstract · Added September 28, 2015
We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
© The Author 2015. Published by Oxford University Press.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Kinome-wide functional screen identifies role of PLK1 in hormone-independent, ER-positive breast cancer.
Bhola NE, Jansen VM, Bafna S, Giltnane JM, Balko JM, Estrada MV, Meszoely I, Mayer I, Abramson V, Ye F, Sanders M, Dugger TC, Allen EV, Arteaga CL
(2015) Cancer Res 75: 405-14
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Cell Cycle Proteins, Drug Synergism, Estradiol, Estrogen Receptor alpha, Female, Fulvestrant, Humans, MCF-7 Cells, Mice, Mice, Nude, Neoplasms, Hormone-Dependent, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Pteridines, RNA, Small Interfering, Random Allocation, Transcription Factors, Transcription, Genetic, Xenograft Model Antitumor Assays, bcl-X Protein
Show Abstract · Added January 20, 2015
Estrogen receptor (ER) α-positive breast cancers initially respond to antiestrogens but eventually become estrogen independent and recur. ER(+) breast cancer cells resistant to long-term estrogen deprivation (LTED) exhibit hormone-independent ER transcriptional activity and growth. A kinome-wide siRNA screen using a library targeting 720 kinases identified Polo-like kinase 1 (PLK1) as one of the top genes whose downregulation resulted in inhibition of estrogen-independent ER transcriptional activity and growth of LTED cells. High PLK1 mRNA and protein correlated with a high Ki-67 score in primary ER(+) breast cancers after treatment with the aromatase inhibitor letrozole. RNAi-mediated knockdown of PLK1 inhibited ER expression, estrogen-independent growth, and ER transcription in MCF7 and HCC1428 LTED cells. Pharmacologic inhibition of PLK1 with volasertib, a small-molecule ATP-competitive PLK1 inhibitor, decreased LTED cell growth, ER transcriptional activity, and ER expression. Volasertib in combination with the ER antagonist, fulvestrant, decreased MCF7 xenograft growth in ovariectomized mice more potently than each drug alone. JUNB, a component of the AP-1 complex, was expressed 16-fold higher in MCF7/LTED compared with parental MCF7 cells. Furthermore, JUNB and BCL2L1 (which encodes antiapoptotic BCL-xL) mRNA levels were markedly reduced upon volasertib treatment in MCF7/LTED cells, while they were increased in parental MCF7 cells. Finally, JUNB knockdown decreased ER expression and transcriptional activity in MCF7/LTED cells, suggesting that PLK1 drives ER expression and estrogen-independent growth via JUNB. These data support a critical role of PLK1 in acquired hormone-independent growth of ER(+) human breast cancer and is therefore a promising target in tumors that have escaped estrogen deprivation therapy.
©2014 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
23 MeSH Terms