, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 229

Publication Record

Connections

Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization.
Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE
(2020) Immunity 52: 388-403.e12
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cell Line, Disease Models, Animal, Drug Therapy, Combination, Ebolavirus, Epitopes, Female, Glycoproteins, Hemorrhagic Fever, Ebola, Humans, Immunoglobulin Fab Fragments, Macaca mulatta, Male, Mice, Mice, Inbred BALB C, Molecular Mimicry, Protein Conformation
Show Abstract · Added March 31, 2020
Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.
Copyright © 2020 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice.
Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N, Bombardi RG, Thornburg NJ, Creech CB, Edwards KM, Li S, Turner HL, Yu W, Zhu X, Wilson IA, Ward AB, Crowe JE
(2019) Cell Host Microbe 26: 715-728.e8
MeSH Terms: Animals, Antibodies, Heterophile, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Birds, Epitopes, Humans, Influenza A Virus, H7N9 Subtype, Influenza Vaccines, Influenza in Birds, Influenza, Human, Mice, Neuraminidase, Orthomyxoviridae Infections, Pre-Exposure Prophylaxis, Vaccination, Vaccines, Inactivated, Viral Proteins, Virus Release
Show Abstract · Added March 31, 2020
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies.
Zhu X, Turner HL, Lang S, McBride R, Bangaru S, Gilchuk IM, Yu W, Paulson JC, Crowe JE, Ward AB, Wilson IA
(2019) Cell Host Microbe 26: 729-738.e4
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antiviral Agents, Cryoelectron Microscopy, Epitopes, Humans, Influenza A Virus, H7N9 Subtype, Influenza Vaccines, Neuraminidase, Orthomyxoviridae Infections, Viral Proteins
Show Abstract · Added March 31, 2020
Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope.
Long F, Doyle M, Fernandez E, Miller AS, Klose T, Sevvana M, Bryan A, Davidson E, Doranz BJ, Kuhn RJ, Diamond MS, Crowe JE, Rossmann MG
(2019) Proc Natl Acad Sci U S A 116: 1591-1596
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cryoelectron Microscopy, Disease Models, Animal, Epitopes, Humans, Male, Mice, Mice, Inbred C57BL, Vaccination, Viral Envelope Proteins, Zika Virus, Zika Virus Infection
Show Abstract · Added March 31, 2019
Zika virus (ZIKV) is a major human pathogen and member of the genus in the Flaviviridae family. In contrast to most other insect-transmitted flaviviruses, ZIKV also can be transmitted sexually and from mother to fetus in humans. During recent outbreaks, ZIKV infections have been linked to microcephaly, congenital disease, and Guillain-Barré syndrome. Neutralizing antibodies have potential as therapeutic agents. We report here a 4-Å-resolution cryo-electron microscopy structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195. The footprint of the ZIKV-195 Fab fragment expands across two adjacent envelope (E) protein protomers. ZIKV neutralization by this antibody is presumably accomplished by cross-linking the E proteins, which likely prevents formation of E protein trimers required for fusion of the viral and cellular membranes. A single dose of ZIKV-195 administered 5 days after virus inoculation showed marked protection against lethality in a stringent mouse model of infection.
0 Communities
1 Members
0 Resources
MeSH Terms
Current Understanding of Humoral Immunity to Enterovirus D68.
Vogt MR, Crowe JE
(2018) J Pediatric Infect Dis Soc 7: S49-S53
MeSH Terms: Animals, Antibodies, Neutralizing, Disease Models, Animal, Enterovirus D, Human, Enterovirus Infections, Epitopes, Humans, Immunity, Humoral, Nervous System Diseases, Respiratory Tract Infections, Seroepidemiologic Studies, Vaccination, Viral Vaccines
Show Abstract · Added March 31, 2019
Enterovirus D68 (EV-D68) is a pathogen that causes outbreaks of respiratory illness across the world, mostly in children, and can be especially severe in those with asthma. Clusters of acute flaccid myelitis, a poliomyelitis-like neuromuscular weakness syndrome, often occur concurrent with EV-D68 respiratory outbreaks. Seroepidemiologic studies have found that the serum of nearly everyone older than 2 to 5 years contains anti-EV-D68 neutralizing antibodies, which suggests that EV-D68 is a ubiquitous pathogen of childhood. However, knowledge of the viral epitopes against which the humoral immune response is directed is only inferred from previous studies of related viruses. Although neutralizing antibodies protect newborn mice from lethal EV-D68 inoculation via nonphysiologic routes, cotton rats have a mixed phenotype of both benefit and possible exacerbation when inoculated intranasally. The human antibody response to EV-D68 needs to be studied further to clarify the role of antibodies in protection versus pathogenesis, which might differ among respiratory and neurologic disease phenotypes.
0 Communities
1 Members
0 Resources
MeSH Terms
Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth.
Chukwuma VU, Kose N, Sather DN, Sapparapu G, Falk R, King H, Singh V, Lampley R, Malherbe DC, Ditto NT, Sullivan JT, Barnes T, Doranz BJ, Labranche CC, Montefiori DC, Kalams SA, Haigwood NL, Crowe JE
(2018) PLoS One 13: e0209437
MeSH Terms: Antibodies, Neutralizing, Antibody Diversity, B-Lymphocytes, Cells, Cultured, Epitope Mapping, Epitopes, HIV Antibodies, HIV Infections, HIV-1, Humans, Hybridomas, Neutralization Tests, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 31, 2019
Broadly neutralizing antibodies (bNAbs) are rarely elicited by current human immunodeficiency virus type 1 (HIV-1) vaccine designs, but the presence of bNAbs in naturally infected individuals may be associated with high plasma viral loads, suggesting that the magnitude, duration, and diversity of viral exposure may contribute to the development of bNAbs. Here, we report the isolation and characterization of a panel of human monoclonal antibodies (mAbs) from two subjects who developed broadly neutralizing autologous antibody responses during HIV-1 infection. In both subjects, we identified collections of mAbs that exhibited specificity only to a few autologous envelopes (Envs), with some mAbs exhibiting specificity only to a subset of Envs within the quasispecies of a particular sample at one time point. Neutralizing antibodies (NAbs) isolated from these subjects mapped mostly to epitopes in the Env V3 loop region and the CD4 binding site. None of the individual neutralizing mAbs recovered exhibited the cumulative breadth of neutralization present in the serum of the subjects. Surprisingly, however, the activity of polyclonal mixtures comprising individual mAbs that each possessed limited neutralizing activity, could achieve increased breadth of neutralizing activity against autologous isolates. While a single broadly neutralizing antibody targeting one epitope can mediate neutralization breadth, the findings presented here suggest that a cooperative polyclonal process mediated by diverse antibodies with more limited breadth targeting multiple epitopes also can achieve neutralization breadth against HIV-1.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine.
Kimble JB, Malherbe DC, Meyer M, Gunn BM, Karim MM, Ilinykh PA, Iampietro M, Mohamed KS, Negi S, Gilchuk P, Huang K, Wolf YI, Braun W, Crowe JE, Alter G, Bukreyev A
(2019) J Virol 93:
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cell Line, Drug Combinations, Ebola Vaccines, Ebolavirus, Epitopes, Female, Ferrets, Genetic Vectors, Glycoproteins, Guinea Pigs, Hemorrhagic Fever, Ebola, Parainfluenza Virus 3, Human, Viral Envelope Proteins, Viral Vaccines
Show Abstract · Added March 31, 2019
Ebolaviruses Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) cause human disease with high case fatality rates. Experimental monovalent vaccines, which all utilize the sole envelope glycoprotein (GP), do not protect against heterologous ebolaviruses. Human parainfluenza virus type 3-vectored vaccines offer benefits, including needle-free administration and induction of mucosal responses in the respiratory tract. Multiple approaches were taken to induce broad protection against the three ebolaviruses. While GP consensus-based antigens failed to elicit neutralizing antibodies, polyvalent vaccine immunization induced neutralizing responses to all three ebolaviruses and protected animals from death and disease caused by EBOV, SUDV, and BDBV. As immunization with a cocktail of antigenically related antigens can skew the responses and change the epitope hierarchy, we performed comparative analysis of antibody repertoire and Fc-mediated protective mechanisms in animals immunized with monovalent versus polyvalent vaccines. Compared to sera from guinea pigs receiving the monovalent vaccines, sera from guinea pigs receiving the trivalent vaccine bound and neutralized EBOV and SUDV at equivalent levels and BDBV at only a slightly reduced level. Peptide microarrays revealed a preponderance of binding to amino acids 389 to 403, 397 to 415, and 477 to 493, representing three linear epitopes in the mucin-like domain known to induce a protective antibody response. Competition binding assays with monoclonal antibodies isolated from human ebolavirus infection survivors demonstrated that the immune sera block the binding of antibodies specific for the GP glycan cap, the GP1-GP2 interface, the mucin-like domain, and the membrane-proximal external region. Thus, administration of a cocktail of three ebolavirus vaccines induces a desirable broad antibody response, without skewing of the response toward preferential recognition of a single virus. The symptoms of the disease caused by the ebolaviruses Ebola, Bundibugyo, and Sudan are similar, and their areas of endemicity overlap. However, because of the limited antigenic relatedness of the ebolavirus glycoprotein (GP) used in all candidate vaccines against these viruses, they protect only against homologous and not against heterologous ebolaviruses. Therefore, a broadly specific pan-ebolavirus vaccine is required, and this might be achieved by administration of a cocktail of vaccines. The effects of cocktail administration of ebolavirus vaccines on the antibody repertoire remain unknown. Here, an in-depth analysis of the antibody responses to administration of a cocktail of human parainfluenza virus type 3-vectored vaccines against individual ebolaviruses was performed, which included analysis of binding to GP, neutralization of individual ebolaviruses, epitope specificity, Fc-mediated functions, and protection against the three ebolaviruses. The results demonstrated potent and balanced responses against individual ebolaviruses and no significant reduction of the responses compared to that induced by individual vaccines.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein.
Kim AS, Austin SK, Gardner CL, Zuiani A, Reed DS, Trobaugh DW, Sun C, Basore K, Williamson LE, Crowe JE, Slifka MK, Fremont DH, Klimstra WB, Diamond MS
(2019) Nat Microbiol 4: 187-197
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Chlorocebus aethiops, Cricetinae, Encephalitis Virus, Eastern Equine, Encephalomyelitis, Equine, Epitope Mapping, Epitopes, Female, HEK293 Cells, Humans, Mice, Protein Domains, Vero Cells, Viral Envelope Proteins
Show Abstract · Added March 31, 2019
Eastern equine encephalitis virus (EEEV) is a mosquito-transmitted alphavirus with a high case mortality rate in humans. EEEV is a biodefence concern because of its potential for aerosol spread and the lack of existing countermeasures. Here, we identify a panel of 18 neutralizing murine monoclonal antibodies (mAbs) against the EEEV E2 glycoprotein, several of which have 'elite' activity with 50 and 99% effective inhibitory concentrations (EC and EC) of less than 10 and 100 ng ml, respectively. Alanine-scanning mutagenesis and neutralization escape mapping analysis revealed epitopes for these mAbs in domains A or B of the E2 glycoprotein. A majority of the neutralizing mAbs blocked infection at a post-attachment stage, with several inhibiting viral membrane fusion. Administration of one dose of anti-EEEV mAb protected mice from lethal subcutaneous or aerosol challenge. These experiments define the mechanistic basis for neutralization by protective anti-EEEV mAbs and suggest a path forward for treatment and vaccine design.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Broadly Neutralizing Antibody Mediated Clearance of Human Hepatitis C Virus Infection.
Kinchen VJ, Zahid MN, Flyak AI, Soliman MG, Learn GH, Wang S, Davidson E, Doranz BJ, Ray SC, Cox AL, Crowe JE, Bjorkman PJ, Shaw GM, Bailey JR
(2018) Cell Host Microbe 24: 717-730.e5
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibody Specificity, Base Sequence, Binding Sites, Cell Line, Cricetulus, Epitopes, Female, HEK293 Cells, HIV-1, Hepacivirus, Hepatitis C, Hepatitis C Antibodies, Humans, Immunologic Memory, Male, Models, Molecular, Mutagenesis, Site-Directed, Viral Envelope Proteins, Viral Load
Show Abstract · Added March 31, 2019
The role that broadly neutralizing antibodies (bNAbs) play in natural clearance of human hepatitis C virus (HCV) infection and the underlying mechanisms remain unknown. Here, we investigate the mechanism by which bNAbs, isolated from two humans who spontaneously cleared HCV infection, contribute to HCV control. Using viral gene sequences amplified from longitudinal plasma of the two subjects, we found that these bNAbs, which target the front layer of the HCV envelope protein E2, neutralized most autologous HCV strains. Acquisition of resistance to bNAbs by some autologous strains was accompanied by progressive loss of E2 protein function, and temporally associated with HCV clearance. These data demonstrate that bNAbs can mediate clearance of human HCV infection by neutralizing infecting strains and driving escaped viruses to an unfit state. These immunopathologic events distinguish HCV from HIV-1 and suggest that development of an HCV vaccine may be achievable.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design.
Flyak AI, Ruiz S, Colbert MD, Luong T, Crowe JE, Bailey JR, Bjorkman PJ
(2018) Cell Host Microbe 24: 703-716.e3
MeSH Terms: Antibodies, Neutralizing, Antibodies, Viral, Binding Sites, Disulfides, Drug Design, Epitopes, Hepacivirus, Hepatitis C, Hepatitis C Antibodies, Humans, Immunoglobulin G, Models, Molecular, Protein Conformation, Sequence Alignment, Viral Envelope Proteins, Viral Hepatitis Vaccines, X-Ray Diffraction
Show Abstract · Added March 31, 2019
Hepatitis C virus (HCV) vaccine efforts are hampered by the extensive genetic diversity of HCV envelope glycoproteins E1 and E2. Structures of broadly neutralizing antibodies (bNAbs) (e.g., HEPC3, HEPC74) isolated from individuals who spontaneously cleared HCV infection facilitate immunogen design to elicit antibodies against multiple HCV variants. However, challenges in expressing HCV glycoproteins previously limited bNAb-HCV structures to complexes with truncated E2 cores. Here we describe crystal structures of full-length E2 ectodomain complexes with HEPC3 and HEPC74, revealing lock-and-key antibody-antigen interactions, E2 regions (including a target of immunogen design) that were truncated or disordered in E2 cores, and an antibody CDRH3 disulfide motif that exhibits common interactions with a conserved epitope despite different bNAb-E2 binding orientations. The structures display unusual features relevant to common genetic signatures of HCV bNAbs and demonstrate extraordinary plasticity in antibody-antigen interactions. In addition, E2 variants that bind HEPC3/HEPC74-like germline precursors may represent candidate vaccine immunogens.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms