Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 590

Publication Record

Connections

Intracellular Degradation of Helicobacter pylori VacA Toxin as a Determinant of Gastric Epithelial Cell Viability.
Foegeding NJ, Raghunathan K, Campbell AM, Kim SW, Lau KS, Kenworthy AK, Cover TL, Ohi MD
(2019) Infect Immun 87:
MeSH Terms: Autophagy, Bacterial Proteins, Cell Line, Cell Survival, Epithelial Cells, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Humans, Hydrogen-Ion Concentration, Muramidase, Protein Stability, Protein Transport, Proteolysis
Show Abstract · Added February 7, 2019
VacA is a secreted pore-forming toxin that induces cell vacuolation and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NHCl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NHCl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NHCl, indicating that NHCl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NHCl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
14 MeSH Terms
An alternative N-terminal fold of the intestine-specific annexin A13a induces dimerization and regulates membrane-binding.
McCulloch KM, Yamakawa I, Shifrin DA, McConnell RE, Foegeding NJ, Singh PK, Mao S, Tyska MJ, Iverson TM
(2019) J Biol Chem 294: 3454-3463
MeSH Terms: Animals, Annexins, Cell Membrane, Epithelial Cells, Humans, Hydrogen-Ion Concentration, Intestinal Mucosa, Intestines, Liposomes, Mice, Models, Molecular, Organ Specificity, Protein Binding, Protein Conformation, alpha-Helical, Protein Multimerization, Protein Structure, Quaternary, Protein Transport
Show Abstract · Added April 1, 2019
Annexin proteins function as Ca-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.
© 2019 McCulloch et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Single-Cell Mass Cytometry of Archived Human Epithelial Tissue for Decoding Cancer Signaling Pathways.
Scurrah CR, Simmons AJ, Lau KS
(2019) Methods Mol Biol 1884: 215-229
MeSH Terms: Animals, Cryopreservation, Epithelial Cells, Epithelium, Fixatives, Flow Cytometry, Formaldehyde, Humans, Mass Spectrometry, Mice, Neoplasms, Paraffin Embedding, Signal Transduction, Single-Cell Analysis, Tissue Fixation
Show Abstract · Added December 14, 2018
The emerging phenomenon of cellular heterogeneity in tissue requires single-cell resolution studies. A specific challenge for suspension-based single-cell analysis is the preservation of intact cell states when single cells are isolated from tissue contexts, in order to enable downstream analyses to extract accurate, native information. We have developed DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue) coupled to mass cytometry (CyTOF: Cytometry by Time-of-Flight), an experimental approach for profiling intact signaling states of single cells from epithelial tissue specimens. We have previously applied DISSECT-CyTOF to fresh mouse intestinal samples and to Formalin-Fixed, Paraffin-Embedded (FFPE) human colorectal cancer specimens. Here, we present detailed protocols for each of these procedures, as well as a new method for applying DISSECT to cryopreserved tissue slices. We present example data for using DISSECT on a cryopreserved specimen of the human colon to profile its immune and epithelial composition. These techniques can be used for high-resolution studies for monitoring disease-related alternations in different cellular compartments using specimens stored in cryopreserved or FFPE tissue banks.
1 Communities
0 Members
0 Resources
15 MeSH Terms
Helicobacter: Inflammation, immunology, and vaccines.
Blosse A, Lehours P, Wilson KT, Gobert AP
(2018) Helicobacter 23 Suppl 1: e12517
MeSH Terms: Animals, Bacterial Vaccines, Epithelial Cells, Helicobacter Infections, Helicobacter pylori, Humans, Inflammation, Myeloid Cells
Show Abstract · Added December 16, 2018
Helicobacter pylori infection induces a chronic gastric inflammation which can lead to gastric ulcers and cancer. The mucosal immune response to H. pylori is first initiated by the activation of gastric epithelial cells that respond to numerous bacterial factors, such as the cytotoxin-associated gene A or the lipopolysaccharide intermediate heptose-1,7-bisphosphate. The response of these cells is orchestrated by different receptors including the intracellular nucleotide-binding oligomerization domain-containing protein 1 or the extracellular epidermal growth factor receptor. This nonspecific response leads to recruitment and activation of various myeloid (macrophages and dendritic cells) and T cells (T helper-17 and mucosal-associated invariant T cells), which magnify and maintain inflammation. In this review, we summarize the major advances made in the past year regarding the induction, the regulation, and the role of the innate and adaptive immune responses to H. pylori infection. We also recapitulate efforts that have been made to develop efficient vaccine strategies.
© 2018 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
8 MeSH Terms
BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability.
Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, Keating CE, Thompson JJ, Verriere TG, Brown RE, Piazuelo MB, Bader DM, Washington MK, Mittal MK, Brand T, Gobert AP, Coburn LA, Wilson KT, Williams CS
(2018) Mucosal Immunol 11: 1363-1374
MeSH Terms: Adult, Animals, Caco-2 Cells, Cell Line, Cell Line, Tumor, Citrobacter rodentium, Coculture Techniques, Colitis, Ulcerative, Colon, Dextran Sulfate, Epithelial Cells, Escherichia coli, Female, HEK293 Cells, Humans, Intestinal Absorption, Intestinal Mucosa, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Middle Aged, Permeability, RNA, Messenger, Signal Transduction, Tight Junctions
Show Abstract · Added June 23, 2018
Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.
0 Communities
3 Members
0 Resources
26 MeSH Terms
Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes.
Shen X, Liu L, Peek RM, Acra SA, Moore DJ, Wilson KT, He F, Polk DB, Yan F
(2018) Mucosal Immunol 11: 1316-1328
MeSH Terms: Animals, Bacterial Proteins, Cell Differentiation, Cell Proliferation, Epithelial Cells, ErbB Receptors, Female, Hydrogels, Immunity, Innate, Immunoglobulin A, Intestinal Mucosa, Lactobacillus rhamnosus, Mice, Mice, Inbred C57BL, Probiotics, T-Lymphocytes, Regulatory, Tight Junctions, Time, Transcriptional Activation
Show Abstract · Added June 8, 2018
The beneficial effects of the gut microbiota on growth in early life are well known. However, knowledge about the mechanisms underlying regulating intestinal development by the microbiota is limited. p40, a Lactobacillus rhamnosus GG-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells for protecting the intestinal epithelium against injury and inflammation. Here, we developed p40-containing pectin/zein hydrogels for targeted delivery of p40 to the small intestine and the colon. Treatment with p40-containing hydrogels from postnatal day 2 to 21 significantly enhanced bodyweight gain prior to weaning and functional maturation of the intestine, including intestinal epithelial cell proliferation, differentiation, and tight junction formation, and IgA production in early life in wild-type mice. These p40-induced effects were abolished in mice with specific deletion of EGFR in intestinal epithelial cells, suggesting that transactivation of EGFR in intestinal epithelial cells may mediate p40-regulated intestinal development. Furthermore, neonatal p40 treatment reduced the susceptibility to intestinal injury and colitis and promoted protective immune responses, including IgA production and differentiation of regulatory T cells, in adult mice. These findings reveal novel roles of neonatal supplementation of probiotic-derived factors in promoting EGFR-mediated maturation of intestinal functions and innate immunity, which likely promote long-term beneficial outcomes.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells.
Horvat A, Noto JM, Ramatchandirin B, Zaika E, Palrasu M, Wei J, Schneider BG, El-Rifai W, Peek RM, Zaika AI
(2018) Oncogene 37: 5054-5065
MeSH Terms: Antigens, Bacterial, Autophagy, Bacterial Proteins, Cell Line, Tumor, Down-Regulation, Epithelial Cells, Gastric Mucosa, HCT116 Cells, Helicobacter Infections, Helicobacter pylori, Humans, Signal Transduction, Stomach, Stomach Neoplasms, Tumor Suppressor Protein p14ARF, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Up-Regulation, Virulence Factors
Show Abstract · Added September 25, 2018
Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells.
Koumangoye R, Omer S, Delpire E
(2018) Am J Physiol Cell Physiol 315: C258-C276
MeSH Terms: Animals, Cell Membrane, Cells, Cultured, Colon, Cytoplasm, Dogs, Epithelial Cells, Female, Madin Darby Canine Kidney Cells, Male, Mice, Oocytes, Salivary Glands, Sodium-Potassium-Chloride Symporters, Sodium-Potassium-Exchanging ATPase, Solute Carrier Family 12, Member 2, Xenopus laevis
Show Abstract · Added May 4, 2018
We recently reported the case of a young patient with multisystem failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1 (NKCC1). Heterologous expression studies in nonepithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using Madin-Darby canine kidney (MDCK) cells grown on glass coverslips, permeabilized support, and Matrigel, we show that the fluorescently tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na-K-ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. Although the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Na -K -2Cl Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia.
Delpire E, Gagnon KB
(2018) Compr Physiol 8: 871-901
MeSH Terms: Animals, Biological Transport, Cell Membrane, Epithelial Cells, Gene Expression Regulation, Humans, Sodium-Potassium-Chloride Symporters, Structure-Activity Relationship
Show Abstract · Added April 2, 2019
Two genes encode the Na -K -2Cl cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na , 1K , and 2Cl across the plasma membrane of cells. Na -K -2Cl cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na /K pump. In many cells, NKCC1 accumulates Cl above its electrochemical potential equilibrium, thereby facilitating Cl channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca channels, leading to Ca influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl . In combination with the Na /K pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K -driven fluid secretion in inner ear, and possibly in Na -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na /K pump participates in reabsorbing 30% of the glomerular-filtered Na . Overall, many critical physiological functions are maintained by the activity of the two Na -K -2Cl cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Successful Establishment of Primary Type II Alveolar Epithelium with 3D Organotypic Coculture.
Sucre JMS, Jetter CS, Loomans H, Williams J, Plosa EJ, Benjamin JT, Young LR, Kropski JA, Calvi CL, Kook S, Wang P, Gleaves L, Eskaros A, Goetzl L, Blackwell TS, Guttentag SH, Zijlstra A
(2018) Am J Respir Cell Mol Biol 59: 158-166
MeSH Terms: Cell Communication, Cells, Cultured, Coculture Techniques, Epithelial Cells, Fibroblasts, Humans, Lung, Lung Injury, Phenotype
Show Abstract · Added April 1, 2019
Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.
0 Communities
2 Members
0 Resources
9 MeSH Terms